Skip to main content
Log in

Topo-Iberia project: CGPS crustal velocity field in the Iberian Peninsula and Morocco

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

A new continuous GPS network was installed under the umbrella of a research project called “Geociencias en Iberia: Estudios integrados de topografía y evolución 4D (Topo-Iberia)”, to improve understanding of kinematic behavior of the Iberian Peninsula region. Here we present a velocity field based on the analysis of the 4 years of data from 25 stations constituting the network, which were analyzed by three different analysis groups contributing to the project. Different geodetic software packages (GIPSY–OASIS, Bernese and GAMIT) as well as different approaches were used to estimate rates of present day crustal deformation in the Iberian Peninsula and Morocco. In order to ensure the consistency of the velocity fields determined by the three groups, the velocities obtained by each analysis center were transformed into a common Eurasia Reference Frame. After that, the strain rate field was calculated. The results put in evidence more prominent residual motions in Morocco and southernmost part of the Iberian Peninsula. In particular, the dilatation and shear strain rates reach their maximum values in the Central Betics and northern Alboran Sea. A small region of high shear strain rate is observed in the east-central part of the peninsula and another deformation focus is located around the Strait of Gibraltar and the Gulf of Cadiz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J et al (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85:457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Argus DF, Gordon RG, DeMets C (2011) Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem Geophys Geosystems 12:Q11001. doi:10.1029/2011GC003751

    Article  Google Scholar 

  • Avallone A, Selvaggi G, D’Anastasio E et al (2010) The RING network: improvement of a GPS velocity field in the central Mediterranean. Ann Geophys 53:39–54. doi:10.4401/ag-4549

    Google Scholar 

  • Bianco G, Devoti R, Luceri V (2003) Combination of loosely constrained solutions. In: Richter B, Schwegmann W, Dick WR (eds) Proceedings of the IERS workshop on combination research and global geophysical fluids, pp 107–109

  • Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107:1–9. doi:10.1029/2001JB000570

    Article  Google Scholar 

  • Bruyninx C, Altamimi Z, Boucher C et al (2009) The European reference frame: maintenance and products. In: Drewes H (ed) Geodetic reference frames. Springer, Berlin, pp 131–136

    Chapter  Google Scholar 

  • Cardozo N, Allmendinger RWW (2009) SSPX: a program to compute strain from displacement/velocity data. Comput Geosci 35:1343–1357. doi:10.1016/j.cageo.2008.05.008

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. User manual. Astron Institute, Univ Bern, vol 640, p 640

  • Devoti R, Riguzzi F, Cuffaro M, Doglioni C (2008) New GPS constraints on the kinematics of the Apennines subduction. Earth Planet Sci Lett 273:163–174. doi:10.1016/j.epsl.2008.06.031

    Article  Google Scholar 

  • Devoti R, Esposito A, Pietrantonio G et al (2011) Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. Earth Planet Sci Lett 311:230–241. doi:10.1016/j.epsl.2011.09.034

    Article  Google Scholar 

  • Dietrich R, Dach R, Engelhardt G et al (2001) ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica—an analysis based on different individual solutions. J Geod 74:756–766. doi:10.1007/s001900000147

    Article  Google Scholar 

  • Echeverria A, Khazaradze G, Asensio E et al (2013) Crustal deformation in eastern Betics from CuaTeNeo GPS network. Tectonophysics 608:600–612. doi:10.1016/j.tecto.2013.08.020

    Article  Google Scholar 

  • Estey LH, Meertens CM (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solut 3:42–49

    Article  Google Scholar 

  • Fadil A, Vernant P, McClusky S et al (2006) Active tectonics of the western Mediterranean: geodetic evidence for rollback of a delaminated subcontinental lithospheric slab beneath the Rif Mountains, Morocco. Geology 34:529–532. doi:10.1130/G22291.1

    Article  Google Scholar 

  • Frontera T, Concha A, Blanco P et al (2012) DInSAR coseismic deformation of the May 2011 Mw 5.1 Lorca earthquake (southeastern Spain). Solid Earth 3:111–119. doi:10.5194/se-3-111-2012

    Article  Google Scholar 

  • Herring T (2003) MATLAB tools for viewing GPS velocities and time series. GPS Solut 7:194–199. doi:10.1007/s10291-003-0068-0

    Article  Google Scholar 

  • Herring TA, King RW, McClusky SC (2008) Introduction to GAMIT/GLOBK. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Johnson HO, Agnew DC (1995) Monument motion and measurements of crustal velocities. Geophys Res Lett 22:2905–2908. doi:10.1029/95GL02661

    Article  Google Scholar 

  • Kierulf HP, Plag HP, Bingley RM et al (2008) Comparison of GPS analysis strategies for high-accuracy vertical land motion. Phys Chem Earth 33:194–204. doi:10.1016/j.pce.2006.11.003

    Article  Google Scholar 

  • Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104:2797. doi:10.1029/1998JB900033

    Article  Google Scholar 

  • Marín-Lechado C, Galindo-Zaldívar J, Gil AJ et al (2010) Levelling profiles and a GPS network to monitor the active folding and faulting deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain). Sensors 10:3504–3518. doi:10.3390/s100403504

    Article  Google Scholar 

  • Martínez-Díaz JJ, Bejar-Pizarro M, Álvarez-Gómez JA et al (2012) Tectonic and seismic implications of an intersegment rupture. Tectonophysics 546–547:28–37. doi:10.1016/j.tecto.2012.04.010

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka A et al (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719. doi:10.1029/1999JB900351

    Article  Google Scholar 

  • McClusky S, Reilinger R, Mahmoud S et al (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155:126–138. doi:10.1046/j.1365-246X.2003.02023.x

    Article  Google Scholar 

  • Palano M, González PJ, Fernández J (2013) Strain and stress fields along the Gibraltar Orogenic Arc: constraints on active geodynamics. Gondwana Res 23:1071–1088. doi:10.1016/j.gr.2012.05.021

    Article  Google Scholar 

  • Pérez-Peña A, Martín-Davila J, Gárate J et al (2010) Velocity field and tectonic strain in southern Spain and surrounding areas derived from GPS episodic measurements. J Geodyn 49:232–240. doi:10.1016/j.jog.2010.01.015

    Article  Google Scholar 

  • Sanz de Galdeano C, Buforn E (2005) From strike-slip to reverse reactivation: the Crevillente fault system and seismicity in the Bullas-Mula area (Betic Cordillera, SE Spain). Geol Acta 3:241–250

    Google Scholar 

  • Scherneck H-G (1991) A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements. Geophys J Int 106:677–694. doi:10.1111/j.1365-246X.1991.tb06339.x

    Article  Google Scholar 

  • Stich D, Batllo J, Morales J et al (2003) Source parameters of the MW=6.1 1910 Adra earthquake (southern Spain). Geophys J Int 155:539–546. doi:10.1046/j.1365-246X.2003.02059.x

    Article  Google Scholar 

  • Wessel P, Smith WHF, Scharroo R et al (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94:409–410. doi:10.1002/2013EO450001

    Article  Google Scholar 

  • Williams SDP, Bock Y, Fang P et al (2004) Error analysis of continuous GPS position time series. J Geophys Res 109:B03412. doi:10.1029/2003JB002741

    Google Scholar 

  • Zhang J, Bock Y, Johnson H et al (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102:18035. doi:10.1029/97JB01380

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC et al (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005. doi:10.1029/96JB03860

    Article  Google Scholar 

Download references

Acknowledgments

This research has been funded by the Spanish Government through the research project “Geosciences in Iberia: Integrated studies on topography and 4-D evolution” (CSD2006-00041). We acknowledge all those people, representing various institutions, who participated in searching for appropriate site locations, and their consequent installation and operation. Also, we would like to thank the landowners who gave their generous permission to install the scientific equipment on their properties. Most of the figures were prepared using the public domain Generic Mapping Tools GMT (Wessel et al. 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Garate.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garate, J., Martin-Davila, J., Khazaradze, G. et al. Topo-Iberia project: CGPS crustal velocity field in the Iberian Peninsula and Morocco. GPS Solut 19, 287–295 (2015). https://doi.org/10.1007/s10291-014-0387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-014-0387-3

Keywords

Navigation