GPS Solutions

, Volume 18, Issue 3, pp 365–373 | Cite as

Ionospheric threat simulation for GNSS using the Spirent hardware signal simulator

  • Thomas DautermannEmail author
  • Matteo Sgammini
  • Sam Pullen
Original Article


Ionospheric disturbances present a considerable hazard to single-frequency satellite navigation systems for airborne users. We discuss our implementation of three ionospheric threat models in the DLR “multi-output advanced signal test environment for receivers” global navigation satellite system simulator, which is based on Spirent GSS 7780/7790 signal generator. These threat models include the standard front-based threat model developed for the integrity assessment of ground-based augmentation systems (GBAS), a simplified plasma bubble model, and ionospheric scintillation, which can be combined with either of the two previously mentioned models. These effects can now straightforwardly be simulated at the German Aerospace Center’s research facilities. As an example, we simulate a GBAS ground facility with code–carrier divergence monitoring, affected by an ionospheric front, and we show the results of a simulation with coincidental occurrence of a plasma bubble and scintillation with an S 4 index of 0.4.


Simulation Scintillation Ionosphere Front Plasma bubble Spirent 



The work was performed while Thomas Dautermann was at the DLR Institute of Communications and Navigation, Oberpfaffenhofen, 82234 Wessling, Germany. A part of this work was presented at the ESA Navitec 2010. We would like to thank Achim Hornbostel for his valuable input regarding technical support for the MASTER simulator.


  1. Afraimovich EL (2008) First GPS-TEC evidence for the wave structure excited by the solar terminator. Earth Planet Sp 60(8):895–900Google Scholar
  2. Baker DM, Davies K (1968) Waves in the ionosphere produced by nuclear explosions. J Geophys Res 73:448–451CrossRefGoogle Scholar
  3. Basu S, Groves KM, Quinn JM, Doherty P (1999) A comparison of TEC fluctuations and scintillations at Ascension Island. J Atmosph Sol Terr Phys 61(16):1219–1226. doi: 10.1016/S1364-6826(99)00052-8 CrossRefGoogle Scholar
  4. Beniguel Y, Adam JP (2007) Effects of scintillations in GNSS operation. In: Lilenstein J (ed) Space weather: research towards applications in Europe. Springer, New York, pp 203–216CrossRefGoogle Scholar
  5. Calais E, Minster JB (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophys Res Lett 22(9):1045–1048. doi: 10.1029/95GL00168 CrossRefGoogle Scholar
  6. Calais E, Minster JB, Hofton M, Hedlin M (1998) Ionospheric signature of surface mine blasts from global positioning system measurements. Geophys J Int 132:191–202. doi: 10.1046/j.1365-246x.1998.00438.x CrossRefGoogle Scholar
  7. Dautermann T, Mayer C (2010). Equatorial plasma depletions observed over Brazil—impact on safety critical GNSS navigation. In: Proceedings ION GNSS-2010, U.S. Institute of Navigation, Portland, Oregon, Sept, pp 2583–2591Google Scholar
  8. Dautermann T, Felux M, Grosch A (2012) Approach service type D evaluation of the DLR GBAS testbed. GPS Solut 16(3):1–13. doi: 10.1007/s10291-011-0239-3 CrossRefGoogle Scholar
  9. Dautermann T, Rémi, P, Belabbas B, Pullen S (2010) GBAS ionospheric threat analysis using DLRs hardware signal simulator, Satellite Navigation Technologies and European workshop on GNSS signals and signal processing (NAVITEC), 2010 5th ESA workshop on, pp 1, 7, 8–10 Dec 2010, doi: 10.1109/NAVITEC.2010.5708010
  10. EUROCAE (2003) Minimum operational performance specification for global navigation satellite ground based augmentation system ground equipment towards support category I operations, technical report ED-114, European Organization for Civil aviation equipmentGoogle Scholar
  11. Fritts DC, Abdu MA, Batista BR et al (2009) Overview and summary of the spread F experiment (SpreadFEx). Ann Geophys 27(5):2141–2155CrossRefGoogle Scholar
  12. Haase JS, Dautermann T, Taylor MJ, Chapagain N, Calais E, Pautet PD (2010) Propagation of plasma bubbles observed in Brazil from GPS and airglow data. Adv Space Res. doi: 10.1016/j.asr.2010.09.025 Google Scholar
  13. Harris M, Murphy T (2009) Putting the standardized GBAS ionospheric anomaly monitors to the test. In: Proceedings ION GNSS-2009, U.S. Institute of Navigation, Savannah, Georgia, Sept, pp 1124–1140Google Scholar
  14. Hegarty C, El-Arini MB, Kim T, Ericson S (2001) Scintillation modeling for GPS-wide area augmentation system receivers. Radio Sci 36(5):1221–1231. doi: 10.1029/1999RS002425 CrossRefGoogle Scholar
  15. Humphreys TE, Psiaki ML, Hinks JC, O’Hanlon B, Kintner PM (2009) Simulating ionosphere-induced scintillation for testing gps receiver phase tracking loops. IEEE J Sel Top Signal Process 3(4):707–715. doi: 10.1109/JSTSP.2009.2024130 CrossRefGoogle Scholar
  16. Kelley MC (2009) The earth’s ionosphere. International geophysics series v96. Academic Press, New YorkGoogle Scholar
  17. Klobuchar JA (1996) Ionospheric time delay effects on earth space propagation. In: Parkinson BW, Spilker JJ (eds) AIAA progress in aeronautics and astronautics. Global positioning system: theory and applications, vol 164. American Institute of Aeronautics and Astronautics, Washington DC, pp 485–515 Google Scholar
  18. Ledvina BM, Makela JJ (2005). First observations of SBAS/WAAS scintillations: using collocated scintillation measurements and all-sky images to study equatorial plasma bubbles. Geophys Res Lett 32(14) doi: 10.1029/2004GL021954
  19. Luo M, Pullen S, Datta-Barua S, Zhang G, Walter T, Enge P (2005) LAAS study of slow-moving ionosphere anomalies and their potential impacts. In: Proceedings ION GNSS-2005, U.S. Institute of Navigation, Long Beach, California, Sept, pp 2337–2349Google Scholar
  20. Mayer C, Belabbas B, Pannowitsch T, Jakowski N, Meurer M, Dunkel W, Weber O (2009) Ionosphere threat space model assessment for GBAS. In: Proceedings ION GNSS-2009, U.S. Institute of Navigation, Savannah, Geogia, Sept, pp 1091–1099Google Scholar
  21. McGraw GA, Murphy T, Brenner M, Pullen S, Dierendonck AJV (2000) Development of the LAAS accuracy models. In: Proceedings ION GPS2000, Institute of navigation, Salt Lake City, UT, Sept, pp 1212–1223Google Scholar
  22. Mitelman AM, Phelts RE, Akos DM, Pullen, SP, Enge, PK (2004) Signal deformations on nominally healthy GPS satellites. In: Proceedings ION NTM-2004, Institute of Navigation, San Diego, CA, JanGoogle Scholar
  23. Navstar GPS Space Segment/Navigation User Interfaces (2004) Unites States Air Force Std. IS-GPS-200, 402 Revision DGoogle Scholar
  24. Pervan B, Gratton L (2005) Orbit ephemeris monitors for local area differential GPS. IEEE Trans Aerosp Electron Syst 41(2):449–460. doi: 10.1109/TAES.2005.1468740 CrossRefGoogle Scholar
  25. Phelts E, Akos D (2006) Effects of signal deformations on modernized GNSS signals. J Glob Position Syst 5(1–2):2–10 Google Scholar
  26. Polge R, Holliday E, Bhagavan B (1973) Generation of a pseudo-random set with desired correlation and probability distribution. Simulation 20(5):153–158CrossRefGoogle Scholar
  27. Pullen S, Park YS, Enge P (2009) Impact and mitigation of ionospheric anomalies on ground-based augmentation of GNSS. Radio Sci 44:RS0A21. doi: 10.1029/2008RS004084 CrossRefGoogle Scholar
  28. RTCA DO-229D (2006) Minimum operational performance standards for GPS wide area augmentation system airborne equipment, radio technical commission for aeronautics technical reportGoogle Scholar
  29. RTCA DO-253C (2008) Minimum operational performance standards for GPS wide area augmentation system airborne equipment, radio technical commission for aeronautics technical reportGoogle Scholar
  30. Saito S, Yoshihara T, Fujii N (2009) Study of effects of the plasma bubble on GBAS by a three-dimensional ionospheric delay model. In: Proceedings ION GNSS-2009, U.S. Institute of Navigation, Savannah, Geogia, Sept, pp 1141–1148Google Scholar
  31. Simili DV, Pervan B (2006) Code-carrier divergence monitoring for the GPS local area augmentation system. In: Proceedings of the position, location, and navigation symposium, pp 483–493Google Scholar
  32. Spirent Communications (2007) SimGen manual, Spirent communications, issue 1–22Google Scholar
  33. Spirent Communications (2009) Simremote user manual and ICD, DGP00792AAA, Issue 2–13, April 2009Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Dautermann
    • 1
    Email author
  • Matteo Sgammini
    • 2
  • Sam Pullen
    • 3
  1. 1.Institute of Flight GuidanceGerman Aerospace Center (DLR)BraunschweigGermany
  2. 2.Institute of Communications and NavigationGerman Aerospace Center (DLR)WesslingGermany
  3. 3.Department of Aero/AstronauticsStanford UniversityStanfordUSA

Personalised recommendations