GPS Solutions

, Volume 16, Issue 2, pp 231–241 | Cite as

Altimetry with GNSS-R interferometry: first proof of concept experiment

  • Antonio Rius
  • Oleguer Nogués-Correig
  • Serni Ribó
  • Estel Cardellach
  • Santi Oliveras
  • Enric Valencia
  • Hyuk Park
  • José Miguel Tarongí
  • Adriano Camps
  • Hans van der Marel
  • Roel van Bree
  • Bas Altena
  • Manuel Martín-Neira
Original Article

Abstract

The Global Navigation Satellite System Reflectometry (GNSS-R) concept was conceived as a means to densify radar altimeter measurements of the sea surface. Until now, the GNSS-R concept relied on open access to GNSS transmitted codes. Recently, it has been proposed that the ranging capability of the technique for ocean altimetric applications can be improved by using all the signals transmitted in the bandwidth allocated to GNSS, which includes open access as well as encrypted signals. The main objective of this study is to provide experimental proof of this enhancement through a 2-day experiment on the Zeeland Bridge (The Netherlands). In the experiment, we used a custom built GNSS-R system, composed of high gain GPS antennas, calibration subsystem, and an FPGA-based signal processor which implemented the new concepts, an X-band radar altimeter and a local geodetic network. The results obtained indicate that the new approach produces a significant improvement in GNSS-R altimetric performance.

Keywords

Ocean altimetry GNSS reflectometry Bistatic radars 

References

  1. Barker BC, Betz JW, Clark JE, Correia JT, Gillis JT, Lazar S, Rehborn KA, Straton JR (2000) Overview of the GPS M code signal. In: Proceedings of the 2000 National Technical Meeting of the Institute of Navigation, Anaheim, CA, Jan 2000, pp 542–549Google Scholar
  2. Garrison JL, Komjathy A, Zavorotny VU, Katzberg SJ (2002) Wind speed measurement using forward scattered GPS signals. IEEE Geosci Remote Sens 40(1):50–65CrossRefGoogle Scholar
  3. Gleason S, Hodgart S, Sun Y, Gommenginger C, Mackin S, Adjrad M, Unwin M (2005) Detection and processing of bistatically reflected GPS signals from low earth orbit for the purpose of ocean remote sensing. IEEE Geosci Remote Sens 43(6):1229–1241CrossRefGoogle Scholar
  4. Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young LE, Hajj GA (2002) First Spaceborne observation of an Earth-reflected GPS signal. Radio Sci 37(1):7-1–7-28Google Scholar
  5. Martín-Neira M (1993) A passive reflectometry and interferometry system (PARIS): application to ocean altimetry. ESA J 17:331–355Google Scholar
  6. Martín-Neira M, D’Addio S, Buck C, Floury N, Prieto-Cerdeira R (2011, in press) The PARIS ocean altimeter in-orbit demonstrator. IEEE Trans Geosci Remote SensGoogle Scholar
  7. Rius A, Cardellach E, Martín-Neira M (2010) Altimetric analysis of the sea-surface GPS-reflected signals. IEEE Trans Geosci Remote Sens 48(4):2119–2127CrossRefGoogle Scholar
  8. Spilker JJ (1996) GPS Signal structure and theoretical performance. In: Parkinson BW, Spilker JJ (eds) Global Positioning System: Theory and Applications, American Institute of Aeronautics, Vol I, Washington, DCGoogle Scholar
  9. Thompson AR, Moran JM, Swenson GW (2004) Interferometry and synthesis in radio astronomy, 2nd edn. Wiley, New YorkGoogle Scholar
  10. Wong G, Phelts RE, Walter T, Enge P (2010) Characterization of signal deformations for GPS and WAAS satellites. Institute of Navigation, Global Navigation Satellite Systems Conference, PortlandGoogle Scholar
  11. Zavorotny VU, Voronovich AG (2000) Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Geosci Remote Sens 38(2):951–964CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Antonio Rius
    • 1
  • Oleguer Nogués-Correig
    • 1
  • Serni Ribó
    • 1
  • Estel Cardellach
    • 1
  • Santi Oliveras
    • 1
  • Enric Valencia
    • 2
  • Hyuk Park
    • 2
  • José Miguel Tarongí
    • 2
  • Adriano Camps
    • 2
  • Hans van der Marel
    • 3
  • Roel van Bree
    • 3
  • Bas Altena
    • 3
  • Manuel Martín-Neira
    • 4
  1. 1.Institut d’Estudis Espacials de Catalunya-CSICBellaterraSpain
  2. 2.Institut d’Estudis Espacials de Catalunya-UPCBarcelonaSpain
  3. 3.Institute of Earth Observation and Space Systems, Faculty of Aerospace EngineeringDelft University of TechnologyHS DelftThe Netherlands
  4. 4.European Space Research and Technology CentreAG NoordwijkThe Netherlands

Personalised recommendations