GPS Solutions

, Volume 13, Issue 2, pp 119–132 | Cite as

Accuracy assessment of the National Geodetic Survey’s OPUS-RS utility

  • Charles R. Schwarz
  • Richard A. Snay
  • Tomás Soler
Original Article

Abstract

OPUS-RS is a rapid static form of the National Geodetic Survey’s On-line Positioning User Service (OPUS). Like OPUS, OPUS-RS accepts a user’s GPS tracking data and uses corresponding data from the U.S. Continuously Operating Reference Station (CORS) network to compute the 3-D positional coordinates of the user’s data-collection point called the rover. OPUS-RS uses a new processing engine, called RSGPS, which can generate coordinates with an accuracy of a few centimeters for data sets spanning as little as 15 min of time. OPUS-RS achieves such results by interpolating (or extrapolating) the atmospheric delays, measured at several CORS located within 250 km of the rover, to predict the atmospheric delays experienced at the rover. Consequently, standard errors of computed coordinates depend highly on the local geometry of the CORS network and on the distances between the rover and the local CORS. We introduce a unitless parameter called the interpolative dilution of precision (IDOP) to quantify the local geometry of the CORS network relative to the rover, and we quantify the standard errors of the coordinates, obtained via OPUS-RS, by using functions of the form
$$ \sigma ({\text{IDOP}},{\text{RMSD}}) = \sqrt {(\alpha \cdot {\text{IDOP}})^{2} + (\beta \cdot {\text{RMSD}})^{2} } $$
here α and β are empirically determined constants, and RMSD is the root-mean-square distance between the rover and the individual CORS involved in the OPUS-RS computations. We found that α = 6.7 ± 0.7 cm and β = 0.15 ± 0.03 ppm in the vertical dimension and α = 1.8 ± 0.2 cm and β = 0.05 ± 0.01 ppm in either the east–west or north–south dimension.

Keywords

GPS Geodesy Rapid static techniques 

References

  1. Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. J Geod 75(12):633–640. doi:10.1007/s001900100204 CrossRefGoogle Scholar
  2. Estey LH, Meertens CH (1999) TEQC: the multipurpose toolkit for GPS/GLONASS data. GPS Solut 3(1):42–49. doi:10.1007/PL00012778 CrossRefGoogle Scholar
  3. Grejner-Brzezinska DA, Wielgosz P, Kashani I, Mader G, Smith D, Robertson D, Komjathy A (2005) Performance assessment of the new rapid static module of the online positioning user service—OPUS-RS. In: Proceedings of the ION GNSS 18th International Technical Meeting of the Satellite Division. Institute of Navigation, pp 2595–2605Google Scholar
  4. Grejner-Brzezinska DA, Kashani I, Wielgosz P, Smith DA, Spencer PSJ, Robertson DS, Mader GL (2007) Efficiency and reliability of ambiguity resolution in network-based real-time kinematic GPS. J Surv Eng 133(2):56–65. doi:10.1061/(ASCE)0733-9453(2007)133:2(56) CrossRefGoogle Scholar
  5. Kashani I, Wielgosz P, Grejner-Brzezinska DA, Mader GL (2005) A new network-based rapid-static module for the NGS online positioning user service—OPUS-RS. In: Proceedings of ION Annual Meeting. Institute of Navigation, pp 928–936Google Scholar
  6. Lazio P (2007) Constraining network adjustments to OPUS-RS coordinate observations. J Surv Eng 133(3):106–113. doi:10.1061/(ASCE)0733-9453(2007)133:3(106) CrossRefGoogle Scholar
  7. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New York, xxiv + 664 pGoogle Scholar
  8. Martin D (2007) Geodetic connections. OPUS rapid static. Am Surv 4(3):44, 46–48Google Scholar
  9. Schwarz CR (2006) Statistics of range of a set of normally distributed numbers. J Surv Eng 132(4):155–159. doi:10.1061/(ASCE)0733-9453(2006)132:4(155) CrossRefGoogle Scholar
  10. Schwarz CR (2008) Heuristic weighting and data conditioning in the National Geodetic Survey rapid static GPS program. J Surv Eng 134(3):76–82. doi:10.1061/(ASCE)0733-9453(2008)134:3(76) CrossRefGoogle Scholar
  11. Snay RA, Soler T (2008) Continuously Operating Reference Station (CORS): history, applications, and future enhancements. J Surv Eng 134(4):95–104CrossRefGoogle Scholar
  12. Soler T, Michalak P, Weston ND, Snay RA, Foote RH (2006) Accuracy of OPUS solutions for 1–4 h observing sessions. GPS Solut 10(1):45–55. doi:10.1007/s10291-005-0007-3 CrossRefGoogle Scholar
  13. Wang J, Stewart MP, Tsakiri M (1998) A discrimination test procedure for ambiguity resolution on-the-fly. J Geod 72(11):644–653. doi:10.1007/s001900050204 CrossRefGoogle Scholar
  14. Wielgosz P, Grejner-Brzezinska D, Kashani I (2004) Network approach to precise GPS navigation. Navigation 51(3):213–220Google Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  • Charles R. Schwarz
    • 1
  • Richard A. Snay
    • 2
  • Tomás Soler
    • 2
  1. 1.Department of GeodesyBethesdaUSA
  2. 2.National Geodetic Survey/NOAASilver SpringUSA

Personalised recommendations