Skip to main content
Log in

Total electron content processing from GPS observations to facilitate ionospheric modeling

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

With the increasing global distribution of high rate dual-frequency global positioning system (GPS) receivers, the production of a real-time atmospheric constituent definition, total electron content (TEC), has become a beneficial contributor to the modeling applications used in the assessment of GPS position accuracy and the composition of the ionosphere, plasmasphere, and troposphere. Historically, TEC measurements have been obtained through post processing techniques to produce the quality of data necessary for modeling applications with rigorous error estimate requirements. These procedures necessitated the collection of large volumes of data to address the various abnormalities in the computation of TEC associated with the use of greater data quality controls and source selection while real-time modeling environments must rely on autonomous controls and filtration techniques to prevent the production of erroneous model results. In this paper we present methods for processing TEC in real time, which utilize several procedures including the application of an ionospheric model to automatically perform quality control on the TEC output and the computational techniques used to address receiver multipath, faulty receiver observations, cycle-slips, segmented processing, and receiver calibrations. The resulting TEC measurements are provided with rigorous error estimates validated using the vertical TEC from the Jason satellite mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

GPS:

Global positioning system

TEC:

Total electron content

CDDIS:

Crustal dynamics data information system

RINEX:

Receiver independent exchange

CODE:

Center for Orbit Determination in Europe

IPP:

Ionospheric penetration point

UHF:

Ultra-high frequency

PIM:

Parameterized ionospheric model

URSI:

Union of radio science

IQR:

Interquartile range

References

  • Araujo-Pradere EA, Fuller-Rowell TJ, Spencer PSJ, Minter CF (2007) Differential validation of the US-TEC model. Radio Sci 42–RS3016, doi: 10.1029/2006RS003459

  • Balan N, Otsuka Y, Tsugawa T, Miyazaki S, Ogawa T, Shiokawa K (2002) Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet condidtions at high solar activity. EPS 54:71–79

    Google Scholar 

  • Bishop G, Coco D, Kappler P, Holland E (1994) Studies and performance of a new technique for mitigation of pseudorange multipath effects in GPS ground stations. In: Proceedings of the 7th Inst Tech Meeting, Satellite Division of the U.S. ION, San Diego, pp 655–666

  • Blewitt G (1990) An automated editing algorithm for GPS data. Geophys Res Lett 17(3):199–202. doi:10.1029/GL017i003p00199

    Article  Google Scholar 

  • Carrano C, Quinn R, Groves M, Anghel A, Codrescu M (2008) Kalman filter estimation of plasmaspheric TEC using GPS. In: Proceedings of IES-2008, IES, Alexandria

  • Carrano C, Groves K (2006) The GPS segment of the AFRL-SCINDA global network and the challenges of real-time TEC estimation in the equatorial ionosphere. In: Proceedings of the institute of navigation technical meeting, ION, Monterey

  • Coco D, Coker C, Bishop G (1993) A realtime GPS ionospheric monitor system. Proceedings of IES-1993, Alexandria

  • Coster AJ, Gaposchkin EM, Thornton LE (1992) Real-time ionospheric monitoring system using GPS. Navigation. J ION 39:2

  • Daniell R Jr, Brown L, Anderson D, Fox M, Doherty P, Decker D, Sojka J, Schunk R (1995) Parameterized ionospheric model: a global ionospheric parameterization based on first principles models. Radio Sci 30(5):1499–1510

    Article  Google Scholar 

  • Datta-Barua S, Doherty P, Dehel T, Klobuchar J (2003) Ionospheric scintillation effects on single and dual frequency GPS positioning. In: Proceedings of the institute of navigation GPS/GNNS Meeting, ION, Portland

  • Feltons J (2003) The international GPS service (IGS) ionosphere working group. Adv Space Sci 31(3):635–644. doi:10.1016/S0273-1177(03)00029-2

    Article  Google Scholar 

  • Fuller-Rowell T, Araujo-Pradere E, Minter C, Codrescu M, Spencer P, Robertson D et al (2006) US-TEC: a new data assimilation product from the space environment center characterizing the ionospheric total electron content using real-time GPS data. Radio Sci 41: RS6003. doi: 10.1029/2005RS003393

  • Gurtner W, Mader G, MacArthur D (1989) A common exchange format for GPS data. GPS Bull 2(3):1–11

    Google Scholar 

  • Gurtner W, Mader G (1990) Receiver independent exchange format version 2. GPS Bull 3(3):1–8

    Google Scholar 

  • Hatanaka Y (1996a) Compact RINEX format and tools (beta-test version). In: IGS workshop proceedings: 1996 analysis center workshop of IGS, Silver Springs, pp 121–129

  • Hatanaka Y (1996b) A RINEX compression format and tools. In: Proceedings of ION GPS-96, Kansas City, pp 177–183

  • Klobuchar J (1996) Ionospheric effects on GPS. In: Parkinson B, Spilker J (ed) Global positioning system: theory and applications, vol 1, Chap 12, AIAA, Washington, pp 485–514

  • Komjathy A, Sparks L, Wilson B, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers to study intense ionospheric storms. Radio Sci 40: RS6006. doi:10.1029/2005RS003279

  • Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric electron content measurements. Radio Sci 33:565–582

    Article  Google Scholar 

  • Menard Y, Fu LL, Escudier P, Parisot F, Perbos J, Vincet P et al (2003) The Jason-1 mission. Mar Geod 26:131–146. doi:10.1080/714044514

    Article  Google Scholar 

  • Ping J, Matsumoto K, Heki K, Saito A, Callahan P, Potts L et al (2004) Validation of Jason-1 nadir ionosphere TEC using GEONET. Mar Geod 27:741–752. doi:10.1080/01490410490889049

    Article  Google Scholar 

  • Press WH, Teukolsty SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, pp 661–666

  • Rideout W, Coster A (2006) Automated GPS processing for global total electron content data, GPS Sol. doi:10.1007/s10291-006-0029-5

  • Sardón E, Ruis A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Sci 29:577–586

    Article  Google Scholar 

  • Sardón E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32:1899–1910

    Article  Google Scholar 

  • Schaer S, Gurtner W (1998) IONEX: the ionosphere map exchange format version 1. In: Proceedings of the IGS AC workshop, Darmstadt

  • Schunk R, Scherliess L, Sojka J, Thompson D, Anderson D, Codrescu M, Minter C, Fuller-Rowell T, Heelis R, Hairston M, Howe B (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci 39:RS1S02

    Article  Google Scholar 

  • Wang C, Hajj G, Rosen IG, Wilson BD (2004) Development of the global assimilative ionospheric model. Radio Sci 39:RS1S06

    Article  Google Scholar 

  • Wilson BD (2007) Private communication

  • Wilson BD, Mannucci AJ (1993) Instrumental biases in ionospheric measurements derived from GPS data. In: Proceedings of the institute of navigation GPS-93, ION, pp 1343–1351

  • Wilson BD, Mannucci AJ, Edwards CD (1995) Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers. Radio Sci 30:639–648

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all colleagues of the Communication/Navigation Outage Forecasting System team and the Air Force Research Laboratory for providing valuable discussions and suggestions. We thank Dr. Laila S. Jeong for encouraging the implementation of this research and Dr. Brian Wilson of the Jet Propulsion Laboratory for providing the Jason TEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeline G. Burrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrell, A.G., Bonito, N.A. & Carrano, C.S. Total electron content processing from GPS observations to facilitate ionospheric modeling. GPS Solut 13, 83–95 (2009). https://doi.org/10.1007/s10291-008-0102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-008-0102-3

Keywords

Navigation