Skip to main content
Log in

Mitigation of higher order ionospheric effects on GNSS users in Europe

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Current dual-frequency GPS measurements can only eliminate the first-order ionospheric term and may cause a higher-order range bias of several centimeters. This research investigates the second-order ionospheric effect for GNSS users in Europe. In comparison to previous studies, the electron density profiles of the ionosphere/plasmasphere are modeled as the sum of three Chapman layers describing electron densities of the ionospheric F2, F1 and E layers and a superposed exponential decay function describing the plasmasphere. The International Geomagnetic Reference Field model is used to calculate the geomagnetic field vectors at numerous points along the incoming ray paths. Based on extended simulation studies, we derive a correction formula to compute the average value of the longitudinal component of the earth’s magnetic field along the line-of-sight as a function of geographic latitude and longitude, and geometrical parameters such as elevation and azimuth angles. Using our correction formula in conjunction with the total electron content (TEC) along the line-of-sight, the second-order ionospheric term can be corrected to the millimeter level for a vertical TEC level of 1018 electrons/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscripta Geodaetica 18(6):280–289

    Google Scholar 

  • Belehaki A, Jakowski N, Reinisch BW (2004) Plasmaspheric electron content derived from GPS TEC and digisonde ionograms. Adv Space Res 33(6):833–837

    Article  Google Scholar 

  • Bradley PA, Dudeney JR (1973) A simple model representation of the electron concentration of the ionosphere. J Atmos Terres Phys 35(12):2131–2146

    Article  Google Scholar 

  • Brunner FK, Gu M (1991) An improved model for the dual frequency ionospheric correction of GPS observations. Manuscripta Geodaetica 16(3):205–214

    Google Scholar 

  • Budden KG (1985) The propagation of radio waves: the theory of radio waves of low power in the ionosphere and magnetosphere. Cambridge University Press, Cambridge. ISBN 0 521 25461 2

    Google Scholar 

  • Davies K (1990) Ionospheric radio. Peter Peregrinus Ltd, London. ISBN 0 86341 186 X

    Google Scholar 

  • Decker RP (1972) Techniques for synthesizing median true height profiles from propagation parameters. J Atmos Terres Phys 34(3):451–464

    Article  Google Scholar 

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(23):L23311. doi: 10.1029/2005GL024342

    Article  Google Scholar 

  • Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the global positioning system: results from GPS/MET experiment. Radio Sci 33(1):175–190

    Article  Google Scholar 

  • Hawarey M, Hobiger T, Schuh H (2005) Effects of the 2nd order ionospheric terms on VLBI measurements. Geophys Res Lett 32(11):L11304. doi: 10.1029/2005GL022729

    Article  Google Scholar 

  • Hoque MM, Jakowski N (2006) Higher-order ionospheric effects in precise GNSS positioning. J Geodesy (in press). doi: 10.1007/s00190-006-0106-0

  • Jakowski N (1996) TEC monitoring by using satellite positioning systems. In: Kohl H, Rüster R, Schlegel K (eds) Modern ionospheric science. EGS, Katlenburg-Lindau, ProduServ GmbH Verlagsservice, Berlin, pp 371–390, ISBN3-9804862-1-4

    Google Scholar 

  • Jakowski N, Wehrenpfennig A, Heise S, Reigber C, Lühr H, Grunwaldt L, Meehan T K (2002) GPS radio occultation measurements of the ionosphere from CHAMP: early results. Geophys Res Lett 29(10):1457. doi: 10.1029/2001 GL014364

    Article  Google Scholar 

  • Jakowski N, Leitinger R, Angling M (2004) Radio occultation techniques for probing the ionosphere. Ann Geophys 47(2/3):1049–1066

    Google Scholar 

  • Jakowski N, Stankov S M, Klaehn D, Beniguel Y, Rueffer J (2004) Operational service for monitoring and evaluating the space weather impact on precise positioning applications of GNSS. In: Proceedings of European Navigation Conference ENC-GNSS2004, Rotterdam, Paper No. GNSS2004–119

  • Kedar S, Hajj G, Wilson B, Heflin M (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1829. doi: 10.1029/2003 GL017639

    Article  Google Scholar 

  • Kelley MC (1989) The Earth’s Ionosphere, Plasmaphysics and Electrodynamics. Academic Press, New York (Appendix B)

    Google Scholar 

  • Klobuchar JA (1996) Ionospheric effects on GPS. In: Parkinson BW (ed) Global Positioning System: Theory and Applications, Vol I. American Institute of Aeronautics& Astronautics, pp 485–515. ISBN 156347106X

  • Langley RB (1997) The GPS error budget. GPS World 8(3):51–56

    Google Scholar 

  • Lunt NL, Kersley L, Bailey GJ (1999) The influence of the protonosphere on GPS observations: model simulations. Radio Sci 34(3):725–732

    Article  Google Scholar 

  • Mandea M, Macmillan S (2000) International geomagnetic reference field—the eighth generation. Earth Planets Space 52(12):1119–1124

    Google Scholar 

  • Norman RJ (2003) An Inversion Technique for obtaining Quasi-Parabolic layer parameters from VI Ionograms. Proceedings IEEE Radar conference, pp. 363–367. doi: 10.1109/RADAR.2003.1278768

  • Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics. Academic Press, New York

    Google Scholar 

  • Rizos C (2002) Network RTK Research and Implementation—a geodetic perspective. J Global Position Syst 1(2):144–150

    Article  Google Scholar 

  • Sardon E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrument biases. Radio Sci 32(5):1899–1910

    Article  Google Scholar 

  • Stankov SM, Jakowski N (2006) Topside ionospheric scale height analysis and modelling based on radio occultation measurements. J Atmos Sol-terr Phys 68:134–162. doi: 10.1016/j.jastp.2005.10.003

    Article  Google Scholar 

  • Strangeways HJ, Ioannides RT (2002) Rigorous calculation of ionospheric effects on GPS Earth-Satellite paths using a precise path determination method. Acta Geod Geoph Hung 37(2–3):281–292

    Article  Google Scholar 

  • Wang Z, Wu Y, Zhang K, Meng Y (2005) Triple-frequency method for high-order ionospheric refractive error modeling in GPS modernization. J Global Position Syst 4(1–2):291–295

    Article  Google Scholar 

  • Wilkes MV (1954) A table of Chapman’s grazing incidence integral Ch(x,χ). Proc Phys Soc 67B, pp. 304

    Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the German State Government of Mecklenburg-Vorpommern under Grant V230-630-08-TIFA-334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mainul Hoque.

Appendix A

Appendix A

The integration of the Chapman function Eq. (8) yields the following sequence:

$$ {\int\limits_{\rm R}^{\rm S} {n^{\rm I}_{\rm e} (h)}} = N_{0} {\int\limits_{\rm R}^{\rm S} {\exp {\left(\frac{1}{2}(1 - z - \sec \chi \exp ( - z))\right)}}}{\rm d}h $$
(19)

where z = (hh 0)/H; applying differentiation and substitution

$$ \begin{aligned} \,&{\rm d}h = H{\rm d}z; {\rm R}^{\prime} = ({\rm R} - h_{0})/H; {\rm S}^{\prime} = ({\rm S} - h_{0})/H;\\ \,&{\int\limits_{\rm R}^{\rm S} {n^{\rm I}_{\rm e} (h)}} = \exp (0.5)HN_{0} {\int\limits_{{\rm R}^{\prime}}^{{\rm S}^{\prime}} {\exp ( - z/2)\exp ( - \sec \chi \exp ( - z)/2)}}{\rm d}z \end{aligned} $$
(20)

let x = exp (− z/2) and applying differentiation and substitution

$${\rm d}z = - (2/x){\rm d}x; {\rm R}^{\prime\prime} = \exp ( - \frac{{{\rm R} - h_{0}}}{{2H}}); {\rm S}^{\prime\prime} = \exp ( - \frac{{{\rm S} - h_{0}}}{{2H}}); $$
$$ \begin{aligned} {\int\limits_{\rm R}^{\rm S} {n^{\rm I}_{\rm e} (h)}} &= - 2\exp (0.5)HN_{0} {\int\limits_{{R}^{\prime\prime}}^{{S}^{\prime\prime}} {\exp ( - \sec \chi \cdot x^{2} /2)}}{\rm d}x \\ & \approx - 2\exp (0.5)HN_{0} \cdot \left. \frac{{\sqrt \pi} \cdot {\rm erfi}(x{\sqrt {- \sec \chi /2})}}{{2{\sqrt {- \sec \chi /2}}}} \right|^{{{\rm S}^{\prime\prime}}}_{{{\rm R}^{\prime\prime}}} \\ & \approx \exp (0.5){\sqrt {2\pi}}{\sqrt {\cos \chi}}HN_{0} \cdot \left. {{\rm erf}( - x{\sqrt {\sec \chi /2}})} \right|^{{{\rm S}^{\prime\prime}}}_{{{\rm R}^{\prime\prime}}} \\ & \approx 4.13HN_{0} {\sqrt {\cos \chi}} \cdot {\left[ {{\rm erf}( - {\rm S}^{\prime\prime}{\sqrt {\sec \chi /2}}) - {\rm erf}( - {\rm R}^{\prime\prime}{\sqrt {\sec \chi /2}})} \right]} \\ \end{aligned} $$
(21)

where erfi is the imaginary error function and erf is the error function. For GPS/GLONASS orbit height (∼20,200 km) or Galileo orbit height (∼23,200 km), and E, F1 and F2 layer scale heights and peak layer heights given in section 3, we estimate the error function term \({\rm erf}( - {\rm S}^{\prime\prime}{\sqrt {\sec \chi /2}}) - {\rm erf}( - {\rm R}^{\prime\prime}{\sqrt {\sec \chi /2}})\) in Eq. (21) to be ∼1 and hence Eq. (21) can be simplified as

$$ {\int\limits_{\rm R}^{\rm S} {n^{\rm I}_{\rm e} (h)}} \approx 4.13HN_{0} {\sqrt {\cos \chi}} $$
(22)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoque, M.M., Jakowski, N. Mitigation of higher order ionospheric effects on GNSS users in Europe. GPS Solut 12, 87–97 (2008). https://doi.org/10.1007/s10291-007-0069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-007-0069-5

Keywords

Navigation