GPS Solutions

, Volume 11, Issue 3, pp 205–213 | Cite as

An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities

  • F. N. TeferleEmail author
  • E. J. Orliac
  • R. M. Bingley
Original Article


We assess the use of precise point positioning (PPP) within the Bernese GPS software (BSW) Version 5.0 over the period from 2000 to 2005. In our strategy, we compute a set of daily PPP solutions for international GNSS service (IGS) reference frame (IGb00) sites by fixing IGS final satellite orbits and clock products, followed by a Helmert transformation of these solutions into ITRF2000, forming a set of continuous position time series over the entire time span. We assess BSW PPP by comparing our set of transformation parameters with those produced by the IGS analysis centre coordinator (ACC) and our position time series with those of the Jet Propulsion Laboratory (JPL) and the Scripps Orbit and Permanent Array Centre at the Scripps Institute of Oceanography (SIO). The distributions of the north (N), east (E) and up (U) daily position differences are characterized by means and SD of +2.2 ± 4.8, −0.6 ± 7.9 and +4.8 ± 17.3 mm with respect to JPL, and of +0.1 ± 4.4, −0.1 ± 7.4 and −0.1 ± 11.8 mm with respect to SIO. Similarly, we find sub-millimetre mean velocity differences and SD for the N, E and U components of 0.9, 1.5 and 2.2 mm/year with JPL, and of 1.2, 1.6 and 2.3 mm/year with SIO. A noise analysis using maximum likelihood estimation (MLE) shows that when estimating global site velocities from our position time series, the series need to be on average up to 1.3 times longer than those of JPL and SIO, before an uncertainty of less than 0.5 mm/year is obtained.


Bernese GPS software Precise point positioning GPS products Site velocities Plate motion 



This work was carried out through the European Sea-Level Service Research Infrastructure (ESEAS-RI) project funded by the European Commission Framework 5, contract No. EVR1-CT-2002-40025. The authors would like to thank U. Hugentobler and J. Kouba for the very helpful discussions and R. Dach and an anonymous reviewer for their comments, which greatly improved the contents of this paper. The CGPS data and products were made available by IGS data archives (Beutler et al. 1999) and the position time series by JPL (S. Owen) and SIO. The figures were generated using GMT (Wessel and Smith 1998).


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B10):2214. DOI 10.1029/2001JB000561Google Scholar
  2. Beutler G, Rothacher M, Schaer S, Springer T, Kouba J, Neilan RE (1999) The international GPS service (IGS): an interdisciplinary service in support of earth sciences. Adv Space Res 23(4):631–635CrossRefGoogle Scholar
  3. Bruyninx C, Carpentier G, Roosbeek F (2004) Today’s EPN and its network coordination. In: Proceedings of the EUREF Symposium. Verlag des Bundes für Kartogr und Geod, Toledo, Spain, 4–6 June 2003, 33:38–50Google Scholar
  4. Ferland R, Gendt G, Schöne T (2004) IGS reference frame mainenance. In: 10 Years IGS celebrating a decade of the international GPS service, University of Berne, pp 10–34Google Scholar
  5. Freymueller JT (2003) [IGSMAIL-4318]: new version of ClockPrep program [online]. IGS central bureau 20 March 2003 Avail at Accessed 18 May 2006
  6. Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32:L06310. DOI 10.1029/2004GL022224Google Scholar
  7. Gendt G, Dick G, Soehne W (1999) GFZ analysis center of the IGS—analysis report 1998. In: IGS 1998 technical report, IGS Central Bureau, pp 79–87Google Scholar
  8. Gendt G, Fang P (2005) [IGSMAIL-5174]: Scope of planned IGS Reanalysis [Electronic Mail]. IGS Central Bureau, Avail at Accessed 8 July 2005
  9. Gendt G, Kouba J (2006) Quality and consistency of the IGS combined products [online]. ESA ESOC 12 May 2006 Avail at Accessed 6 Oct 2006
  10. Herring TA (2005) GLOBK Global Kalman filter VLBI and GPS analysis program version 10.1. Dept. of Earth, Atmospheric, and planetary sciences. Massachusetts Institute of Technology, Cambridge, MA, USAGoogle Scholar
  11. Hreinsdóttir S, Freymueller JT, Bürgmann R, Mitchell J (2006) Coseismic deformation of the 2002 Denali fault earthquake: insights from GPS measurements. J Geophys Res 111:B03308. DOI 10.1029/2005JB003676Google Scholar
  12. Hugentobler U, Dach R, Fridez P, Meindl M (eds) (2006) Bernese GPS software version 5.0 Draft. Astronomical Institute University of Berne, pp 574Google Scholar
  13. Kierulf HP, Plag HP (2004) Reference Frame induced noise in CGPS coordinate time series. EOS Trans, AGU 85(47), Fall Meet (Suppl) Abstract G53A–0114Google Scholar
  14. King RW, Bock Y (2005) Documentation for the GAMIT GPS Analysis Software Version 10.2. Dept. of Earth, Atmospheric, and Planetary Sciences. Massachusetts Institue of Technology, Cambridge, USAGoogle Scholar
  15. Kouba J (2002) The GPS Toolbox ITRF Transformations. GPS Solut 5(3):88–90CrossRefGoogle Scholar
  16. Kouba J (2003) A Guide to using International GPS Service (IGS) products [online]. IGS Central Bureau Feb 2003 Avail at Accessed 11 Oct 2006
  17. Kouba J (2005) A possible detection of the 26 December 2004 great Sumatra-Andaman Islands earthquake with solution products of the international GNSS service. Stud Geophys Geod 49:463–483CrossRefGoogle Scholar
  18. Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28CrossRefGoogle Scholar
  19. Kouba J, Springer T (2001) New IGS station and satellite clock combination. GPS Solut 4(4):31–36CrossRefGoogle Scholar
  20. Larson KM, Lowry AR, Kostoglodov V, Hutton W, Sánchez O, Hudnut K, Suárez G (2004) Crustal deformation measurements in Guerrero, Mexico. J Geophys Res 109(B4):1–19CrossRefGoogle Scholar
  21. McCarthy DD, Petit G (2004) IERS Conventions. McCarthy DD (ed) IERS tech note 32 Verlag des Bundes für Kartgr and Geod. Frankfurt, GermanyGoogle Scholar
  22. Niell AE (1996) Global mapping functions for the atmospheric delay at radio wavelenghts. J Geophys Res 101(B2):3227–3246CrossRefGoogle Scholar
  23. Penna NT, Stewart MP (2003) Aliased tidal signatures in continuous GPS height time series. Geophys Res Lett 30(23):2184. DOI 10.1029/2003GL018828Google Scholar
  24. Prawirodirdjo L, Bock Y (2004) Instantaneous global plate motion model from 12 years of continuous GPS observations. J Geophys Res 109(8):B08405. DOI 10.1029/2003JB002944Google Scholar
  25. Ray J (2003) [IGSMAIL-4279]: updated <P1-C1> biases and cc2noncc [online]. IGS Central Bureau 26 Feb 2003 Avail at Accessed 18 May 2006
  26. Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Solut 8(4):251–266CrossRefGoogle Scholar
  27. Schaer S, Hugentobler U, Dach R, Meindl M, Bock H, Urschl C, Gäde A, Ploner M, Ostini L, Fridez P, Beutler G (2006) GNSS analysis at code [online]. ESA ESOC 12 May 2006 Avail at Accessed 6 Oct 2006Google Scholar
  28. Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase centre corrections of satellite and receiver antennas. GPS Solut 9(4):283–293CrossRefGoogle Scholar
  29. Smith KD, von Seggern D, Blewitt G, Preston L, Anderson JG, Wernicke BP, Davis JL (2004) Evidence for deep magma injection beneath lake Tahoe, Nevada-California. Science 305(5688):1277–1280CrossRefGoogle Scholar
  30. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111:B05402. DOI 10.1029/2005JB003747Google Scholar
  31. Stewart MP, Penna NT, Lichti DD (2005) Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares. J Geodesy 79(8):479–489CrossRefGoogle Scholar
  32. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans, AGU 79(47):579CrossRefGoogle Scholar
  33. Williams SDP (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geodesy 76(9–10):483–494. DOI 10.1007/s00190-002-0283-4Google Scholar
  34. Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson D (2004) Error analysis of GPS position time series. J Geophys Res 109(B3):B03412CrossRefGoogle Scholar
  35. Zhang J, Bock Y, Johnson HO, Fang P, Williams SDP, Genrich J, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102(B8):18035–18055CrossRefGoogle Scholar
  36. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Engineering Surveying and Space GeodesyUniversity of NottinghamNottinghamUK

Personalised recommendations