Skip to main content
Log in

Metaheuristics for data mining

Survey and opportunities for big data

  • Invited Survey
  • Published:
4OR Aims and scope Submit manuscript

Abstract

In the context of big data, many scientific communities aim to provide efficient approaches to accommodate large-scale datasets. This is the case of the machine-learning community, and more generally, the artificial intelligence community. The aim of this article is to explain how data mining problems can be considered as combinatorial optimization problems, and how metaheuristics can be used to address them. Four primary data mining tasks are presented: clustering, association rules, classification, and feature selection. This article follows the publication of a book in 2016 concerning this subject (Dhaenens and Jourdan, Metaheuristics for big data, Wiley, New York, 2016); additionally, updated references and an analysis of the current trends are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul-Rahman S, Bakar AA, Mohamed-Hussein ZA (2013) Optimizing big data in bioinformatics with swarm algorithms. In: 2013 IEEE 16th international conference on computational science and engineering, pp 1091–1095. https://doi.org/10.1109/CSE.2013.158

  • Abubaker A, Baharum A, Alrefaei M (2015) Automatic clustering using multi-objective particle swarm and simulated annealing. PLoS ONE 10(7):e0130995

    Google Scholar 

  • Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: VLDB ’94: Proceedings of the 20th international conference on very large data bases. Morgan Kaufmann Publishers Inc, pp 487–499

  • Agrawal R, Imielinski T, Swami AN (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data. ACM Press, pp 207–216

  • Alam S, Dobbie G, Koh YS, Riddle P, Rehman SU (2014) Research on particle swarm optimization based clustering: a systematic review of literature and techniques. Swarm Evol Comput 17:1–13

    Google Scholar 

  • Alatas B, Akin E, Karci A (2008) Modenar: multi-objective differential evolution algorithm for mining numeric association rules. Appl Soft Comput 8(1):646–656

    Google Scholar 

  • Alba E, García-Nieto J, Jourdan L, Talbi, EG (2007) Gene selection in cancer classification using pso/svm and ga/svm hybrid algorithms. In: IEEE congress on evolutionary computation, 2007. CEC 2007. IEEE, pp 284–290

  • Anand R, Vaid A, Singh PK (2009) Association rule mining using multi-objective evolutionary algorithms: strengths and challenges. In: World congress on nature & biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 385–390

  • Baalamurugan K, Bhanu S (2018) An efficient clustering scheme for cloud computing problems using metaheuristic algorithms. S.V. Cluster Comput, pp 1–11

  • Bacardit J, Butz MV (2007) Data mining in learning classifier systems: comparing \(XCS\) with \(GAssist\). Learn Classif Syst 4399:282–290

    Google Scholar 

  • Bala J, Huang, J, Vafaie H, DeJong K, Wechsler H. (1995) Hybrid learning using genetic algorithms and decision trees for pattern classification. In: IJCAI, vol 1, pp 719–724

  • Bandyopadhyay S, Maulik U (2001) Nonparametric genetic clustering: comparison of validity indices. IEEE Trans Syst Man Cybern Part C Appl Rev 31(1):120–125. https://doi.org/10.1109/5326.923275

    Google Scholar 

  • Bandyopadhyay S, Mukhopadhyay A, Maulik U (2007) An improved algorithm for clustering gene expression data. Bioinformatics 23(21):2859–2865

    Google Scholar 

  • Barba-Gonzaléz C, García-Nieto J, Nebro AJ, Aldana-Montes JF (2017) Multi-objective big data optimization with jmetal and spark. In: International conference on evolutionary multi-criterion optimization. Springer, pp 16–30

  • Barros RC, Basgalupp MP, de Carvalho AC, Freitas AA (2012) A hyper-heuristic evolutionary algorithm for automatically designing decision-tree algorithms. In: Proceedings of the 14th annual conference on genetic and evolutionary computation. ACM, pp 1237–1244

  • Basgalupp MP, Barros RC, Podgorelec V (2015) Evolving decision-tree induction algorithms with a multi-objective hyper-heuristic. In: Proceedings of the 30th annual ACM symposium on applied computing. ACM, pp 110–117

  • Begum S, Chakraborty S, Banerjee A, Das S, Sarkar R, Chakraborty D (2018) Gene selection for diagnosis of cancer in microarray data using memetic algorithm. In: Intelligent engineering informatics. Springer, pp 441–449

  • Bezdek JC, Boggavarapu S, Hall LO, Bensaid A (1994) Genetic algorithm guided clustering. In: International conference on evolutionary computation, pp 34–39

  • Bong CW, Rajeswari M (2011) Multi-objective nature-inspired clustering and classification techniques for image segmentation. Appl Soft Comput J 11(4):3271–3282. https://doi.org/10.1016/j.asoc.2011.01.014

    Google Scholar 

  • Borges HB, Nievola JC (2005) Attribute selection methods comparison for classification of diffuse large b-cell lymphoma. In: Fourth international conference on machine learning and applications, 2005. Proceedings. IEEE, pp 6

  • Boryczka U, Kozak J (2010) Ant colony decision trees—a new method for constructing decision trees based on ant colony optimization. In: Computational collective intelligence technologies and applications. Springer, pp 373–382

  • Boryczka U, Kozak J (2015) Enhancing the effectiveness of ant colony decision tree algorithms by co-learning. Appl Soft Comput 30:166–178

    Google Scholar 

  • Bursa M, Lhotska L, Macas M (2007) Hybridized swarm metaheuristics for evolutionary random forest generation. In: 7th international conference on hybrid intelligent systems, 2007. HIS 2007, pp 150–155. https://doi.org/10.1109/HIS.2007.9

  • Can U, Alatas B (2017) Automatic mining of quantitative association rules with gravitational search algorithm. Int J Softw Eng Knowl Eng 27(03):343–372

    Google Scholar 

  • Cano A, Luna JM, Ventura S (2013) High performance evaluation of evolutionary-mined association rules on gpus. J Supercomput 66(3):1438–1461

    Google Scholar 

  • Che D, Safran M, Peng Z (2013) From big data to big data mining: challenges, issues, and opportunities. In: Database systems for advanced applications. Springer, pp 1–15

  • Corne D, Dhaenens C, Jourdan L (2012) Synergies between operations research and data mining: the emerging use of multi-objective approaches. Eur J Oper Res 221(3):469–479

    Google Scholar 

  • Cowgill M, Harvey R, Watson L (1999) Genetic algorithm approach to cluster analysis. Comput Math Appl 37(7):99–108. https://doi.org/10.1016/S0898-1221(99)00090-5

    Google Scholar 

  • Dankolo MN, Radzi NHM, Sallehuddin R, Mustaffa NH (2017) A study of metaheuristic algorithms for high dimensional feature selection on microarray data. In: AIP conference proceedings, vol. 1905. AIP Publishing, p 040010

  • de la Iglesia B, Reynolds A, Rayward-Smith VJ (2005) Developments on a multi-objective metaheuristic (momh) algorithm for finding interesting sets of classification rules. In: Evolutionary multi-criterion optimization. Springer, pp 826–840

  • de la Iglesia B, Richards G, Philpott MS, Rayward-Smith VJ (2006) The application and effectiveness of a multi-objective metaheuristic algorithm for partial classification. Eur J Oper Res 169(3):898–917

    Google Scholar 

  • del Jesus MJ, Gamez JA, Gonzalez P, Puerta JM (2011) On the discovery of association rules by means of evolutionary algorithms. Wiley Interdiscip Rev Data Min Knowl Discov 1(5):397–415

    Google Scholar 

  • Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113. https://doi.org/10.1145/1327452.1327492

    Google Scholar 

  • Defays D (1977) An efficient algorithm for a complete link method. Comput J 20(4):364–366. https://doi.org/10.1093/comjnl/20.4.364

    Google Scholar 

  • Dhaenens C, Jourdan L (2016) Metaheuristics for big data. Wiley, New York

    Google Scholar 

  • Diao R, Shen Q (2015) Nature inspired feature selection meta-heuristics. Artif Intell Rev 44(3):311–340. https://doi.org/10.1007/s10462-015-9428-8

    Google Scholar 

  • Djenouri Y, Bendjoudi A, Mehdi M, Nouali-Taboudjemat N, Habbas Z (2015) Gpu-based bees swarm optimization for association rules mining. J Supercomput 71(4):1318–1344

    Google Scholar 

  • Djenouri Y, Djenouri D, Habbas Z, Belhadi A (2018) How to exploit high performance computing in population-based metaheuristics for solving association rule mining problem. Distrib Parallel Databases 36(2):369–397

    Google Scholar 

  • Djenouri Y, Drias H, Habbas Z (2014) Bees swarm optimisation using multiple strategies for association rule mining. Int J Bio-Inspired Comput 6(4):239–249

    Google Scholar 

  • Dussaut JS, Vidal PJ, Ponzoni I, Olivera AC (2018) Comparing multiobjective evolutionary algorithms for cancer data microarray feature selection. In: 2018 IEEE congress on evolutionary computation (CEC), pp 1–8. https://doi.org/10.1109/CEC.2018.8477812

  • Ebrahimpour MK, Nezamabadi-Pour H, Eftekhari M (2018) Ccfs: a cooperating coevolution technique for large scale feature selection on microarray datasets. Comput Biol Chem 73:171–178

    Google Scholar 

  • Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya AY, Foufou S, Bouras A (2014) A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans Emerg Top Comput 2(3):267–279. https://doi.org/10.1109/TETC.2014.2330519

    Google Scholar 

  • Fong S, Wong R, Vasilakos AV (2016) Accelerated pso swarm search feature selection for data stream mining big data. IEEE Trans Serv Comput 9(1):33–45. https://doi.org/10.1109/TSC.2015.2439695

    Google Scholar 

  • Freitas AA (2008) A review of evolutionary algorithms for data mining. In: Soft computing for knowledge discovery and data mining. Springer, pp 79–111

  • Freitas AA (2013) Data mining and knowledge discovery with evolutionary algorithms. Springer, Berlin

    Google Scholar 

  • Friedrichs F, Igel C (2005) Evolutionary tuning of multiple SVM parameters. Neurocomputing 64:107–117

    Google Scholar 

  • Gao W (2016) Improved ant colony clustering algorithm and its performance study. In: Computational intelligence and neuroscience. https://doi.org/10.1155/2016/4835932

  • García-Nieto J, Alba E, Jourdan L, Talbi EG (2009) Sensitivity and specificity based multiobjective approach for feature selection: application to cancer diagnosis. Inf Process Lett 109:887–896

    Google Scholar 

  • García Piquer Á (2012) Facing-up challenges of multiobjective clustering based on evolutionary algorithms: representations, scalability and retrieval solutions. Ph.D. thesis, Universitat Ramon Llull

  • Gheraibia Y, Moussaoui A, Djenouri Y, Kabir S, Yin PY (2016) Penguins search optimisation algorithm for association rules mining. J Comput Inf Technol 24(2):165–179

    Google Scholar 

  • Ghosh A, Halder A, Kothari M, Ghosh S (2008) Aggregation pheromone density based data clustering. Inf Sci 178(13):2816–2831. https://doi.org/10.1016/j.ins.2008.02.015

    Google Scholar 

  • Ghosh A, Nath B (2004) Multi-objective rule mining using genetic algorithms. Inf Sci 163(1):123–133

    Google Scholar 

  • Green RC, Wang L, Alam M (2012) Training neural networks using central force optimization and particle swarm optimization: insights and comparisons. Expert Syst Appl 39(1):555–563

    Google Scholar 

  • Gu S, Cheng R, Jin Y (2018) Feature selection for high-dimensional classification using a competitive swarm optimizer. Soft Comput 22(3):811–822. https://doi.org/10.1007/s00500-016-2385-6

    Google Scholar 

  • Gupta GP, Jha S (2018) Integrated clustering and routing protocol for wireless sensor networks using cuckoo and harmony search based metaheuristic techniques. Eng Appl Artif Intell 68:101–109. https://doi.org/10.1016/j.engappai.2017.11.003

    Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  • Han J (2005) Data mining: concepts and techniques. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  • Han X, Quan L, Xiong X, Almeter M, Xiang J, Lan Y (2017) A novel data clustering algorithm based on modified gravitational search algorithm. Eng Appl Artif Intell 61:1–7. https://doi.org/10.1016/j.engappai.2016.11.003

    Google Scholar 

  • Handl J, Knowles J (2004) Evolutionary multiobjective clustering. In: Proceedings of the eighth international conference on parallel problem solving from nature. Springer, pp 1081–1091

  • Handl J, Knowles JD (2007) An evolutionary approach to multiobjective clustering. IEEE Trans Evol Comput 11(1):56–76

    Google Scholar 

  • Handl J, Knowles J (2012) Clustering criteria in multiobjective data clustering. In: Coello C, Cutello V, Deb K, Forrest S, Nicosia G, Pavone M (eds) Parallel problem solving from nature—PPSN XII, vol 7492. Lecture notes in computer science. Springer, Berlin, pp 32–41

    Google Scholar 

  • Handl J, Meyer B (2007) Ant-based and swarm-based clustering. Swarm Intell 1(2):95–113

    Google Scholar 

  • Handl J, Knowles J, Kell D (2005) Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15):3201–3212

    Google Scholar 

  • Heraguemi KE, Kamel N, Drias H (2016) Multi-swarm bat algorithm for association rule mining using multiple cooperative strategies. Appl Intell 45(4):1021–1033

    Google Scholar 

  • Hilderman R, Hamilton HJ (2013) Knowledge discovery and measures of interest, vol 638. Springer, Berlin

    Google Scholar 

  • Holden N, Freitas AA (2005) A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data. In: SIS, pp 100–107

  • Holden N, Freitas AA (2008) A hybrid pso/aco algorithm for discovering classification rules in data mining. J Artif Evol Appl 2008:2:1–2:11. https://doi.org/10.1155/2008/316145

    Google Scholar 

  • Hruschka E, Campello R, Freitas A, de Carvalho A (2009) A survey of evolutionary algorithms for clustering. IEEE Trans Syst Man Cybern Part C Appl Rev 39(2):133–155. https://doi.org/10.1109/TSMCC.2008.2007252

    Google Scholar 

  • Hu J, Yang-Li X (2007) Association rules mining using multi-objective coevolutionary algorithm. In: International conference on computational intelligence and security workshops, 2007. CISW 2007. IEEE, pp 405–408

  • Huang DS, Du JX (2008) A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans Neural Netw 19(12):2099–2115

    Google Scholar 

  • Igel C, Wiegand S, Friedrichs F (2005) Evolutionary optimization of neural systems: the use of strategy adaptation. In: Trends and applications in constructive approximation. Springer, pp 103–123

  • Jacques J, Taillard J, Delerue D, Jourdan L, Dhaenens C (2013) The benefits of using multi-objectivization for mining pittsburgh partial classification rules in imbalanced and discrete data. In: Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, pp 543–550

  • Jacques J, Taillard J, Delerue D, Dhaenens C, Jourdan L (2015) Conception of a dominance-based multi-objective local search in the context of classification rule mining in large and imbalanced data sets. Appl Soft Comput 34:705–720

    Google Scholar 

  • José-García A, Gómez-Flores W (2016) Automatic clustering using nature-inspired metaheuristics: A survey. Appl Soft Comput J 41:192–213. https://doi.org/10.1016/j.asoc.2015.12.001

    Google Scholar 

  • Juliusdottir T, Corne D, Keedwell E, Narayanan A (2005) Two-phase ea/k-nn for feature selection and classification in cancer microarray datasets. In: Proceedings of the 2005 IEEE symposium on computational intelligence in bioinformatics and computational biology, CIBCB 2005, Embassy Suites Hotel La Jolla, La Jolla, CA, USA, November 14 & 15, 2005. IEEE, pp 1–8

  • Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley series in probability and statistics. Wiley, New York. https://doi.org/10.2307/2532178

    Google Scholar 

  • Kaufman L, Rousseeuw PJ (2008) Partitioning around medoids (Program PAM), chap 2. Wiley-Blackwell, New York, pp 68–125. https://doi.org/10.1002/9780470316801.ch2

    Google Scholar 

  • Kaya M (2006) Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules. Soft Comput 10(7):578–586

    Google Scholar 

  • Kaya M, Alhajj R (2005) Genetic algorithm based framework for mining fuzzy association rules. Fuzzy Sets Syst 152(3):587–601

    Google Scholar 

  • Kazmi S, Javaid N, Mughal MJ, Akbar M, Ahmed SH, Alrajeh N (2017) Towards optimization of metaheuristic algorithms for iot enabled smart homes targeting balanced demand and supply of energy. IEEE Access

  • Khabzaoui M, Dhaenens C, Talbi EG (2004) A multicriteria genetic algorithm to analyze microarray data. In: Evolutionary Computation, 2004. CEC2004. Congress on, vol 2, pp 1874–1881

  • Khabzaoui M, Dhaenens C, Talbi EG (2005) Parallel genetic algorithms for multi-objective rule mining. In: The 6th MIC2005

  • Khabzaoui M, Dhaenens C, Talbi EG (2008) Combining evolutionary algorithms and exact approaches for multi-objective knowledge discovery. RAIRO-Oper Res Recherche Opérationnelle 42(1):69–83

    Google Scholar 

  • Khan K, Sahai A (2012) A comparison of ba, ga, pso, bp and lm for training feed forward neural networks in e-learning context. Int J Intell Syst Appl 4(7):23

    Google Scholar 

  • Kim Y, Street W, Menczer F (2002) Data mining: opportunities and challenges. Feature selection in data mining. Idea Group, Hershey, pp 80–105

    Google Scholar 

  • Kira K, Rendell LA (1992) A practical approach to feature selection. In: Proceedings of the ninth international workshop on machine learning, pp 249–256

  • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1):273–324

    Google Scholar 

  • Krishna K, Murty M (1999) Genetic k-means algorithm. IEEE Trans Syst Man Cybern Part B Cybern 29(3):433–439. https://doi.org/10.1109/3477.764879

    Google Scholar 

  • Kurada RR, Pavan DKK, Rao DA (2013) A preliminary survey on optimized multiobjective metaheuristic methods for data clustering using evolutionary approaches. arXiv preprint arXiv:1312.2366

  • Laney D (2001) 3D data management: controlling data volume, velocity and variety. Gartner. Retrieved 6

  • Larose DT (2014) Discovering knowledge in data: an introduction to data mining. Wiley, New York

    Google Scholar 

  • Leung S, Tang Y, Wong WK (2012) A hybrid particle swarm optimization and its application in neural networks. Expert Syst Appl 39(1):395–405

    Google Scholar 

  • Lixiang Li MW, Xiao J, Wang C, Yang Y (2012) Data clustering using bacterial foraging optimization. J Intell Inf Syst 38(2):321–341

    Google Scholar 

  • Liu H, Motoda H (2007) Computational methods of feature selection. Chapman & Hall/Crc data mining and knowledge discovery series. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Ma BB, Fong S, Millham R (2018) Data stream mining in fog computing environment with feature selection using ensemble of swarm search algorithms. In: 2018 conference on information communications technology and society (ICTAS). IEEE, pp 1–6

  • Maimon O, Rokach L (2007) Soft computing for knowledge discovery and data mining. Springer, Berlin

    Google Scholar 

  • Maimon O, Rokach L (2010) Data mining and knowledge discovery handbook, 2nd edn. Springer, Berlin

    Google Scholar 

  • Manikandan R, Kalpana A (2017) Feature selection using fish swarm optimization in big data. Cluster Comput, pp 1–13

  • Marinakis Y, Marinaki M, Doumpos M, Matsatsinis N, Zopounidis C (2008) Optimization of nearest neighbor classifiers via metaheuristic algorithms for credit risk assessment. J Global Optim 42(2):279–293. https://doi.org/10.1007/s10898-007-9242-1

    Google Scholar 

  • Matthews SG, Gongora MA, Hopgood AA (2011) Evolving temporal fuzzy association rules from quantitative data with a multi-objective evolutionary algorithm. In: Hybrid artificial intelligent systems. Springer, pp 198–205

  • Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recognit 33(9):1455–1465

    Google Scholar 

  • McQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp 281–297

  • Meisel S, Mattfeld D (2010) Synergies of operations research and data mining. Eur J Oper Res 206(1):1–10

    Google Scholar 

  • Mlakar U, Zorman M, Fister I Jr, Fister I (2017) Modified binary cuckoo search for association rule mining. J Intell Fuzzy Syst 32(6):4319–4330

    Google Scholar 

  • Mukhopadhyay A, Maulik U (2011) A multiobjective approach to MR brain image segmentation. Appl Soft Comput 11(1):872–880. https://doi.org/10.1016/j.asoc.2010.01.007

    Google Scholar 

  • Mukhopadhyay A, Maulik U, Bandyopadhyay S (2009) Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes. IEEE Trans Evol Comput 13(5):991–1005

    Google Scholar 

  • Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello C et al (2014) Survey of multiobjective evolutionary algorithms for data mining: Part II. IEEE Trans Evol Comput 18(1):20–35

    Google Scholar 

  • Mukhopadhyay A, Maulik U, Bandyopadhyay S (2015) A survey of multiobjective evolutionary clustering. ACM Comput Surv 47(4):61. https://doi.org/10.1145/2742642

    Google Scholar 

  • Murthy C, Chowdhury N (1996) In search of optimal clusters using genetic algorithms. Pattern Recogn Lett 17(8):825–832. https://doi.org/10.1016/0167-8655(96)00043-8

    Google Scholar 

  • Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18. https://doi.org/10.1016/j.swevo.2013.11.003

    Google Scholar 

  • Narendra PM, Fukunaga K (1977) A branch and bound algorithm for feature subset selection. IEEE Trans Comput 26(9):917–922. https://doi.org/10.1109/TC.1977.1674939

    Google Scholar 

  • Nunez SG, Attoh-Okine N (2014) Metaheuristics in big data: an approach to railway engineering. In: 2014 IEEE International Conference on Big Data (Big Data). IEEE, pp 42–47

  • Olafsson S, Li X, Wu S (2008) Operations research and data mining. Eur J Oper Res 187(3):1429–1448

    Google Scholar 

  • Otero FE, Freitas AA, Johnson CG (2012) Inducing decision trees with an ant colony optimization algorithm. Appl Soft Comput 12(11):3615–3626

    Google Scholar 

  • Ozbakir L, Turna F (2017) Clustering performance comparison of new generation meta-heuristic algorithms. Knowl Based Syst 130:1–16. https://doi.org/10.1016/j.knosys.2017.05.023

    Google Scholar 

  • Pandove D, Goel S, Rani R (2018) Systematic review of clustering high-dimensional and large datasets. ACM Trans Knowl Discov Data 12(2):16:1–16:68. https://doi.org/10.1145/3132088

    Google Scholar 

  • Qodmanan HR, Nasiri M, Minaei-Bidgoli B (2011) Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence. Expert Syst Appl 38(1):288–298

    Google Scholar 

  • Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithms and their applications to data clustering. Artif Intell Rev 35(3):211–222

    Google Scholar 

  • Rebentrost P, Mohseni M, Lloyd S (2013) Quantum support vector machine for big feature and big data classification. arXiv preprint arXiv:1307.0471

  • Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. In: Encyclopedia of database systems. Springer, pp 532–538

  • Salama KM, Otero FE (2014) Learning multi-tree classification models with ant colony optimization. In: Proceedings international conference on evolutionary computation theory and applications (ECTA-14), pp 38–48

  • Salama KM, Abdelbar AM, Otero FE (2015) Investigating evaluation measures in ant colony algorithms for learning decision tree classifiers. In: 2015 IEEE symposium series on computational intelligence

  • Salleb-Aouissi A, Vrain C, Nortet C (2007) Quantminer: a genetic algorithm for mining quantitative association rules. In: IJCAI, vol 7

  • Sarkar M, Yegnanarayana B, Khemani D (1997) A clustering algorithm using an evolutionary programming-based approach. Pattern Recogn Lett 18(10):975–986

    Google Scholar 

  • Sawhney R, Mathur P, Shankar R (2018) A firefly algorithm based wrapper-penalty feature selection method for cancer diagnosis. In: Gervasi O, Murgante B, Misra S, Stankova E, Torre CM, Rocha AMA, Taniar D, Apduhan BO, Tarantino E, Ryu Y (eds) Computational science and its applications—ICCSA 2018. Springer, Cham, pp 438–449

    Google Scholar 

  • Selvi RS, Valarmathi ML (2017) An improved firefly heuristics for efficient feature selection and its application in big data. Biomed Res 28:S236–S241

    Google Scholar 

  • Shah SC, Kusiak A (2004) Data mining and genetic algorithm based gene/snp selection. Artif Intell Med 31(3):183–196

    Google Scholar 

  • Sheikh RH, Raghuwanshi MM, Jaiswal AN (2008) Genetic algorithm based clustering: a survey. In: First international conference on emerging trends in engineering and technology. IEEE, pp 314–319

  • Shelokar P, Jayaraman V, Kulkarni B (2004) An ant colony approach for clustering. Anal Chim Acta 509(2):187–195. https://doi.org/10.1016/j.aca.2003.12.032

    Google Scholar 

  • Shenoy PD, Srinivasa K, Venugopal K, Patnaik LM (2003) Evolutionary approach for mining association rules on dynamic databases. In: Advances in knowledge discovery and data mining. Springer, pp 325–336

  • Shenoy PD, Srinivasa K, Venugopal K, Patnaik LM (2005) Dynamic association rule mining using genetic algorithms. Intell Data Anal 9(5):439–453

    Google Scholar 

  • Shi SY, Suganthan PN, Deb K (2004) Multiclass protein fold recognition using multiobjective evolutionary algorithms. In: Proceedings of the 2004 IEEE symposium on computational intelligence in bioinformatics and computational biology, 2004. CIBCB’04. IEEE, pp 61–66

  • Shvachko K, Kuang H, Radia S, Chansler R (2010) The Hadoop distributed file system. In: Proceedings of the 2010 IEEE 26th symposium on mass storage systems and technologies (MSST), MSST ’10, pp. 1–10. IEEE Computer Society, Washington, DC, USA. https://doi.org/10.1109/MSST.2010.5496972

  • Sibson R (1973) Slink: an optimally efficient algorithm for the single-link cluster method. Comput J 16(1):30–34. https://doi.org/10.1093/comjnl/16.1.30

    Google Scholar 

  • Siedlecki W, Sklansky J (1989) A note on genetic algorithms for large-scale feature selection. Pattern Recogn Lett 10(5):335–347. https://doi.org/10.1016/0167-8655(89)90037-8

    Google Scholar 

  • Sklansky J, Vriesenga M (1996) Genetic selection and neural modeling of piecewise-linear classifiers. Int J Pattern Recogn Artif Intell 10(05):587–612

    Google Scholar 

  • Song A, Song J, Ding X, Xu G, Chen J (2017) Utilizing bat algorithm to optimize membership functions for fuzzy association rules mining. In: International conference on database and expert systems applications. Springer, pp 496–504

  • Sörensen K (2015) Metaheuristics—the metaphor exposed. Int Trans Oper Res 22(1):3–18

    Google Scholar 

  • Suthaharan S (2015) Machine learning models and algorithms for big data classification: thinking with examples for effective learning, vol 36. Springer, Berlin

    Google Scholar 

  • Suttorp T, Igel C (2006) Multi-objective optimization of support vector machines. In: Multi-objective machine learning. Springer, pp 199–220

  • Tang R, Fong S (2018) Clustering big IoT data by metaheuristic optimized mini-batch and parallel partition-based dgc in hadoop. Future Gener Comput Syst 86:1395–1412

    Google Scholar 

  • Triguero I, Peralta D, Bacardit J, García S, Herrera F (2015) Mrpr: a mapreduce solution for prototype reduction in big data classification. Neurocomputing 150:331–345

    Google Scholar 

  • Tsai CW, Chiang MC, Ksentini A, Chen M (2016) Metaheuristic algorithms for healthcare: open issues and challenges. Comput Electr Eng 53:421–434. https://doi.org/10.1016/j.future.2018.03.006

    Google Scholar 

  • Tsai CW, Liu SJ, Wang YC (2017) A parallel metaheuristic data clustering framework for cloud. J Parallel Distrib Comput 116:39–49. https://doi.org/10.1016/j.jpdc.2017.10.020

    Google Scholar 

  • Tseng L, Yang S (2001) Genetic approach to the automatic clustering problem. Pattern Recognit 34(2):415–424. https://doi.org/10.1016/S0031-3203(00)00005-4

    Google Scholar 

  • Xu X, Chen L, Chen Y (2004) A4c: an adaptive artificial ants clustering algorithm. In: Proceedings of the 2004 IEEE symposium on computational intelligence in bioinformatics and computational biology, 2004. CIBCB ’04, pp 268–275. https://doi.org/10.1109/CIBCB.2004.1393963

  • Xue B, Zhang M, Browne WN (2013) Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans Cybern 43(6):1656–1671. https://doi.org/10.1109/TSMCB.2012.2227469

    Google Scholar 

  • Xue B, Zhang M, Browne WN, Yao X (2016) A survey on evolutionary computation approaches to feature selection. IEEE Trans Evol Comput 20(4):606–626. https://doi.org/10.1109/TEVC.2015.2504420

    Google Scholar 

  • Yan X, Zhang C, Zhang S (2009) Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. Expert Syst Appl 36(2):3066–3076

    Google Scholar 

  • Yang CS, Chuang LY, Chen YJ, Yang CH (2008) Feature selection using memetic algorithms. In: Third international conference on convergence and hybrid information technology, 2008. ICCIT’08, vol 1. IEEE, pp 416–423

  • Zheng Y, Jia L, Cao L (2012) Multi-objective gene expression programming for clustering. Inf Technol Control 41(3):283–294. https://doi.org/10.5755/j01.itc.41.3.1330

    Google Scholar 

  • Zhang Y, Gong Dw, Cheng J (2017) Multi-objective particle swarm optimization approach for cost-based feature selection in classification. IEEE/ACM Trans Comput Biol Bioinform 14(1):64–75. https://doi.org/10.1109/TCBB.2015.2476796

    Google Scholar 

  • Zheng B, Zhang J, Yoon SW, Lam SS, Khasawneh M, Poranki S (2015) Predictive modeling of hospital readmissions using metaheuristics and data mining. Expert Syst Appl 42(20):7110–7120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Jourdan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaenens, C., Jourdan, L. Metaheuristics for data mining. 4OR-Q J Oper Res 17, 115–139 (2019). https://doi.org/10.1007/s10288-019-00402-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10288-019-00402-4

Keywords

Mathematics Subject Classification

Navigation