Skip to main content
Log in

Recent contributions to linear semi-infinite optimization

  • Invited Survey
  • Published:
4OR Aims and scope Submit manuscript

Abstract

This paper reviews the state-of-the-art in the theory of deterministic and uncertain linear semi-infinite optimization, presents some numerical approaches to this type of problems, and describes a selection of recent applications in a variety of fields. Extensions to related optimization areas, as convex semi-infinite optimization, linear infinite optimization, and multi-objective linear semi-infinite optimization, are also commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agmon S (1954) The relaxation method for linear inequalities. Can J Math 6:382–392

    Article  Google Scholar 

  • Aliprantis C, Border K (2005) Infinite dimensional analysis: a Hitchhiker’s Guide, 3rd edn. Springer, Berlin

    Google Scholar 

  • Altinel IK, Çekyay BÇ, Feyzioğlu O, Keskin ME, Özekici S (2011) Mission-based component testing for series systems. Ann Oper Res 186:1–22

    Article  Google Scholar 

  • Altinel IK, Çekyay BÇ, Feyzioğlu O, Keskin ME, Özekici S (2013) The design of mission-based component test plans for series connection of subsystems. IIE Trans 45:1202–1220

    Article  Google Scholar 

  • Anderson EJ, Lewis AS (1989) An extension of the simplex algorithm for semi-infinite linear programming. Math Program 44A:247–269

    Article  Google Scholar 

  • Anderson EJ, Nash P (1987) Linear programming in infinite-dimensional spaces: theory and applications. Wiley, Chichester

    Google Scholar 

  • Anderson EJ, Goberna MA, López MA (2001) Simplex-like trajectories on quasi-polyhedral convex sets. Math Oper Res 26:147–162

    Article  Google Scholar 

  • Audy J-F, D’Amours S, Rönnqvist M (2012) An empirical study on coalition formation and cost/savings allocation. Int J Prod Econ 136:13–27

    Article  Google Scholar 

  • Auslender A, Goberna MA, López MA (2009) Penalty and smoothing methods for convex semi-infinite programming. Math Oper Res 34:303–319

    Article  Google Scholar 

  • Auslender A, Ferrer A, Goberna MA, López MA (2015) Comparative study of RPSALG algorithms for convex semi-infinite programming. Comput Optim Appl 60:59–87

    Article  Google Scholar 

  • Azé D, Corvellec J-N (2004) Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim Calc Var 10:409–425

    Article  Google Scholar 

  • Basu A, Martin K, Ryan CT (2014) On the sufficiency of finite support duals in semi-infinite linear programming. Oper Res Lett 42:16–20

    Article  Google Scholar 

  • Basu A, Martin K, Ryan CT (2015) A Unified approach to semi-infinite linear programs and duality in convex programming. Math Oper Res 40:146–170

    Article  Google Scholar 

  • Basu A, Martin K, Ryan CT (2017) Strong duality and sensitivity analysis in semi-infinite linear programming. Math Program 161A:451–485

    Article  Google Scholar 

  • Ben-Tal A, Ghaoui LE, Nemirovski A (2009) Robust optimization. Princeton, New Jersey

  • Betrò B (2004) An accelerated central cutting plane algorithm for linear semi-infinite programming. Math Program 101A:479–495

    Article  Google Scholar 

  • Betrò B (2007) Bayesian robustness: theory and computation. In: Ruggeri F, Kenett RS, Faltin F (eds) Encyclopedia of statistics in quality and reliability. Wiley, Chichester, pp 203–207

    Google Scholar 

  • Betrò B (2009) Numerical treatment of Bayesian robustness problems. Int J Appr Reason 50:279–288

    Article  Google Scholar 

  • Bisbos CD, Ampatzis AT (2008) Shakedown analysis of spatial frames with parameterized load domain. Eng Struct 303:119–3128

    Google Scholar 

  • Blado D, Hu W, Toriello A (2016) Semi-infinite relaxations for the dynamic knapsack problem with stochastic item sizes. SIAM J Optim 26:1625–1648

    Article  Google Scholar 

  • Bodirsky M, Jonsson P, Oertzen T (2012) Essential convexity and complexity of semi-algebraic constraints. Log Methods Comput Sci 8:4–25

    Article  Google Scholar 

  • Boţ RI, Csetnek ER, Wanka G (2008) Sequential optimality conditions in convex programming via perturbation approach. J Convex Anal 15:149–164

    Google Scholar 

  • Brosowski B (1982) Parametric semi-infinite optimization. Peter Lang, Frankfurt am Main

    Google Scholar 

  • Brosowski B (1984) Parametric semi-infinite linear programming I. Continuity of the feasible set and the optimal value. Math Program Stud 21:18–42

    Article  Google Scholar 

  • Cánovas MJ, Hall JAJ, López MA, Parra J. (2017) Calmness of partially perturbed linear systems with an application to interior point methods. University Miguel Hernández of Elche, Spain. (Preprint, CL. 1432IO)

  • Cánovas MJ, Henrion R, Parra J, Toledo FJ (2016c) Critical objective size and calmness modulus in linear programming. Set-Valued Var Anal 24:565–579

    Article  Google Scholar 

  • Cánovas MJ, López MA, Parra J, Toledo FJ (2018) Lipschitz modulus of fully perturbed linear programs. Pacific J Optim (to appear)

  • Cánovas MJ, López MA, Parra J, Toledo FJ (2005) Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems. Math Program 103A:95–126

    Article  Google Scholar 

  • Cánovas MJ, López MA, Parra J, Toledo FJ (2006a) Distance to solvability/unsolvability in linear optimization. SIAM J Optim 16:629–649

    Article  Google Scholar 

  • Cánovas MJ, López MA, Parra J, Toledo FJ (2006b) Ill-posedness with respect to the solvability in linear optimization. Linear Algebra Appl 416:520–540

    Article  Google Scholar 

  • Cánovas MJ, López MA, Parra J, Toledo FJ (2007) Error bounds for the inverse feasible set mapping in linear semi-infinite optimization via a sensitivity dual approach. Optimization 56:547–563

    Article  Google Scholar 

  • Cánovas MJ, Hantoute A, Parra J, Toledo FJ (2014a) Calmness of the argmin mapping in linear semi-infinite optimization. J Optim Theory Appl 160:111–126

    Article  Google Scholar 

  • Cánovas MJ, Kruger AY, López MA, Parra J, Théra MA (2014b) Calmness modulus of linear semi-infinite programs. SIAM J Optim 24:29–48

    Article  Google Scholar 

  • Cánovas MJ, López MA, Parra J, Toledo FJ (2014c) Calmness of the feasible set mapping for linear inequality systems. Set-Valued Var Anal 22:375–389

    Article  Google Scholar 

  • Cánovas MJ, Hantoute A, Parra J, Toledo FJ (2015) Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization. Optim Lett 9:513–521

    Article  Google Scholar 

  • Cánovas MJ, Hantoute A, Parra J, Toledo FJ (2016a) Calmness modulus of fully perturbed linear programs. Math Program 158A:267–290

    Article  Google Scholar 

  • Cánovas MJ, Henrion R, López MA, Parra J (2016b) Outer limit of subdifferentials and calmness moduli in linear and nonlinear programming. J Optim Theory Appl 169:925–952

    Article  Google Scholar 

  • Cánovas MJ, Dontchev AL, López MA, Parra J (2009) Isolated calmness of solution mappings in convex semi-infinite optimization. J Math Anal Appl 350:892–837

  • Chan TCY, Mar PhA (2017) Stability and continuity in robust optimization. SIAM J Optim 27:817–841

    Article  Google Scholar 

  • Charnes A, Cooper WW, Kortanek KO (1962) Duality, Haar programs, and finite sequence spaces. Proc Natl Acad Sci USA 48:783–786

    Article  Google Scholar 

  • Charnes A, Cooper WW, Kortanek KO (1963) Duality in semi-infinite programs and some works of Haar and Carathéodory. Manag Sci 9:209–228

    Article  Google Scholar 

  • Charnes A, Cooper WW, Kortanek KO (1965) On representations of semi-infinite programs which have no duality gaps. Manag Sci 12:113–121

    Article  Google Scholar 

  • Charnes A, Cooper WW, Kortanek KO (1969) On the theory of semi-infinite programming and a generalization of the Kuhn-Tucker saddle point theorem for arbitrary convex functions. Nav Res Log Quart 16:41–51

    Article  Google Scholar 

  • Chu YC (1966) Generalization of some fundamental theorems on linear inequalities. Acta Math Sinica 16:25–40

    Google Scholar 

  • Chuong TD, Jeyakumar V (2017a) An exact formula for radius of robus feasibility of uncertain linear programs. J Optim Theory Appl 173:203–226

    Article  Google Scholar 

  • Chuong TD, Jeyakumar V (2017b) A generalized Farkas lemma with a numerical certificate and linear semi-infinite programs with SDP duals. Linear Algebra Appl 515:38–52

    Article  Google Scholar 

  • Clarke FH (1976) A new approach to Lagrange multipliers. Math Oper Res 1:165–174

    Article  Google Scholar 

  • Correa R, Hantoute A, López MA (2016) Weaker conditions for subdifferential calculus of convex functions. J Funct Anal 271:1177–1212

    Article  Google Scholar 

  • Cozad A, Sahinidis NV, Miller DC (2015) A combined first-principles and data-driven approach to model building. Comput Chem Eng 73:116–127

    Article  Google Scholar 

  • Cozman FG, Polpo de Campos C (2014) Kuznetsov independence for interval-valued expectations and sets of probability distributions: properties and algorithms. Int J Appr Reason 55:666–682

    Article  Google Scholar 

  • Daniilidis A, Goberna MA, López MA, Lucchetti R (2015) Stability in linear optimization under perturbations of the left-hand side coefficients. Set-Valued Var Anal 23:737–758

    Article  Google Scholar 

  • Dantzig GB (1991) Linear programming. In: Lenstra JK et al (eds) History of mathematical programming: a collection of personal reminiscences. North-Holland, Amsterdam, pp 19–31

    Google Scholar 

  • Daum S, Werner R (2011) A novel feasible discretization method for linear semi-infinite programming applied to basket options pricing. Optimization 60:1379–1398

    Article  Google Scholar 

  • Dinh N, Goberna MA, López MA, Song TQ (2007) New Farkas-type constraint qualifications in convex infinite programming. ESAIM: Control Optim Calc Var 13:580–597

  • Dinh N, Goberna MA, López MA, Volle M (2010) Convex inequalities without constraint qualification nor closedness condition, and their applications in optimization. Set-valued Var Anal 18:423–445

    Article  Google Scholar 

  • Dolgin Y, Zeheb E (2005) Model reduction of uncertain systems retaining the uncertainty structure. Syst Control Lett 54:771–779

    Article  Google Scholar 

  • Dontchev AL, Rockafellar RT (2009) Implicit functions and solution mappings: a view from variational analysis. Springer, New York

    Book  Google Scholar 

  • Duffin R, Karlovitz LA (1965) An infinite linear program with a duality gap. Manag Sci 12:122–134

    Article  Google Scholar 

  • Dür M, Jargalsaikhan B, Still G (2016) Genericity results in linear conic programming-a tour d’horizon. Math Oper Res 42:77–94

    Article  Google Scholar 

  • Eberhard A, Roshchina V, Sang T (2017) Outer limits of subdifferentials for min-max type functions. Manuscript (arXiv:1701.02852v1) [math.OC]

  • Fabian M, Henrion R, Kruger AY, Outrata J (2010) Error bounds: necessary and sufficient conditions. Set-Valued Anal 18:121–149

    Article  Google Scholar 

  • Fajardo MD, López MA (1999) Locally Farkas-Minkowski systems in convex semi-infinite programming. J Optim Theory Appl 103:313–335

    Article  Google Scholar 

  • Fajardo MD, López MA (2006) Some results about the facial geometry of convex semi-infinite systems. Optimization 55:661–684

    Article  Google Scholar 

  • Fajardo MD, López MA, Puente R (2008) Linear representations and quasipolyhedrality of a finite-valued convex function. Optimization 57:215–237

    Article  Google Scholar 

  • Fang DH, Li C, Ng KF (2009) Constraint qualifications for extended Farkas’s lemmas and Lagrangian dualities in convex infinite programming. SIAM J Optim 20:1311–1332

    Article  Google Scholar 

  • Fang DH, Li C, Ng KF (2010) Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming. Nonlinear Anal 73:1143–1159

    Article  Google Scholar 

  • Faybusovich L, Mouktonglang T, Tsuchiya T (2008) Numerical experiments with universal barrier functions for cones of Chebyshev systems. Comput Optim Appl 41:205–223

    Article  Google Scholar 

  • Ferrer A, Goberna MA, González-Gutiérrez E, Todorov MI (2016) A comparative study of relaxation algorithms for the linear semi-infinite feasibility problem. Ann Oper Res. doi:10.1007/s10479-016-2135-2

    Google Scholar 

  • Feyzioglu O, Altinel IK, Ozekici S (2008) Optimum component test plans for phased-mission systems. Eur J Oper Res 185:255–265

    Article  Google Scholar 

  • Fischer T (1983) Contributions to semi-infinite linear optimization. Meth Verf Math Phys 27:175–199

    Google Scholar 

  • Gao SY, Sun J, Wu S-Y (2016) A semi-infinite programming approach to two-stage stochastic linear programs with high-order moment constraints. Optim Lett. doi:10.1007/s11590-016-1095-4

    Google Scholar 

  • Ghate A, Sharma D, Smith RL (2010) A shadow simplex method for infinite linear programs. Oper Res 58:865–877

    Article  Google Scholar 

  • Glashoff K, Gustafson SA (1983) Linear optimization and approximation. Springer, Berlin

    Book  Google Scholar 

  • Goberna MA (2005a) Linear semi-infinite optimization: recent advances. In: Rubinov A, Jeyakumar V (eds) Continuous optimization: current trends and modern applications. Springer, New York, pp 3–22

    Chapter  Google Scholar 

  • Goberna MA (2005b) Linear semi-infinite programming: a guided tour. IMCA Monoghaphs, Lima

    Google Scholar 

  • Goberna MA, Kanzi N (2016) Optimality conditions in convex multi-objective SIP. Math Program (Ser A). doi:10.1007/s10107-016-1081-8

    Google Scholar 

  • Goberna MA, López MA (1988a) Optimal value function in semi-infinite programming. J Optim Theory Appl 59:261–279

    Article  Google Scholar 

  • Goberna MA, López MA (1998b) Topological stability of linear semi-infinite inequality systems. J Optim Theory Appl 89:227–236

    Article  Google Scholar 

  • Goberna MA, López MA (1998c) Linear semi-infinite optimization. Wiley, Chichester

    Google Scholar 

  • Goberna MA, López MA (2014) Post-optimal analysis in linear semi-infinite optimization. Springer Briefs, Springer, New York

    Book  Google Scholar 

  • Goberna MA, Todorov MI (2009) Primal-dual stability in continuous linear optimization. Math Program 116B:129–146

    Article  Google Scholar 

  • Goberna MA, López MA, Todorov MI (1996) Stability theory for linear inequality systems. SIAM J Matrix Anal Appl 17:730–743

    Article  Google Scholar 

  • Goberna MA, López MA, Todorov MI (1997) Stability theory for linear inequality systems II: upper semicontinuity of the solution set mapping. SIAM J Optim 7:1138–1151

    Article  Google Scholar 

  • Goberna MA, López MA, Todorov MI (2001) On the stability of the feasible set in linear optimization. Set-Valued Anal 9:75–99

    Article  Google Scholar 

  • Goberna MA, López MA, Todorov MI (2003) Extended active constraints in linear optimization with applications. SIAM J Optim 14:608–619

    Article  Google Scholar 

  • Goberna MA, Gómez S, Guerra-Vázquez F, Todorov MI (2007) Sensitivity analysis in linear semi-infinite programming: perturbing cost and right-hand-side coefficients. Eur J Oper Res 181:1069–1085

    Article  Google Scholar 

  • Goberna MA, Terlaky T, Todorov MI (2010a) Sensitivity analysis in linear semi-infinite programming via partitions. Math Oper Res 35:14–25

    Article  Google Scholar 

  • Goberna MA, González E, Martinez-Legaz JE, Todorov MI (2010b) Motzkin decomposition of closed convex sets. J Math Anal Appl 364:209–221

    Article  Google Scholar 

  • Goberna MA, Lancho A, Todorov MI, Vera de Serio VN (2011) On implicit active constraints in linear semi-infinite programs with unbounded coefficients. Appl Math Optim 63:239–256

    Article  Google Scholar 

  • Goberna MA, Guerra-Vázquez F, Todorov MI (2013a) Constraint qualifications in linear vector semi-infinite optimization. Eur J Oper Res 227:12–21

    Article  Google Scholar 

  • Goberna MA, Iusem A, Martínez-Legaz JE, Todorov MI (2013b) Motzkin decomposition of closed convex sets via truncation. J Math Anal Appl 400:35–47

    Article  Google Scholar 

  • Goberna MA, Jeyakumar V, Li G, López MA (2013c) Robust linear semi-infinite programming duality under uncertainty. Math Program 139B:185–203

    Article  Google Scholar 

  • Goberna MA, Jeyakumar V, Li G, Vicente-Pérez J (2014a) Robust solutions of multi-objective linear semi-infinite programs under constraint data uncertainty. SIAM J Optim 24:1402–1419

    Article  Google Scholar 

  • Goberna MA, López MA, Volle M (2014b) Primal attainment in convex infinite optimization duality. J Convex Anal 21:1043–1064

    Google Scholar 

  • Goberna MA, Jeyakumar V, Li G, Vicente-Pérez J (2015) Robust solutions to multi-objective linear programs with uncertain data. Eur J Oper Res 242:730–743

    Article  Google Scholar 

  • Goberna MA, Guerra-Vázquez F, Todorov MI (2016a) Constraint qualifications in convex vector semi-infinite optimization. Eur J Oper Res 249:32–40

    Article  Google Scholar 

  • Goberna MA, Jeyakumar V, Li G, Linh N (2016b) Radius of robust feasibility formulas for classes of convex programs with uncertain polynomial constrains. OR Lett 44:67–73

    Google Scholar 

  • Goberna MA, Hiriart-Urruty J.-B., López MA (2017c) Best approximate solutions of inconsistent linear inequality systems, submitted

  • Goberna MA, Jeyakumar V, Li G, Vicente-Pérez J (2017a) Radii of robust efficiency in robust multi-objective convex optimization. Submitted

  • Goberna MA, Ridolfi A, Vera de Serio VN (2017b) Stability of the duality gap in linear optimization. Set-Valued Var Anal. doi:10.1007/s11228-017-0405-z

    Google Scholar 

  • Goberna MA, López MA, Volle, M (2018) Modified Lagrangian duality for the supremum of convex functions. Pacific J Optim, to appear

  • González-Gutiérrez E, Todorov MI (2012) A relaxation method for solving systems with infinitely many linear inequalities. Optim Lett 6:291–298

    Article  Google Scholar 

  • González-Gutiérrez E, Rebollar LA, Todorov MI (2012) Relaxation methods for solving linear inequality systems: converging results. Top 20:426–436

    Article  Google Scholar 

  • Guo F (2015) Semidefinite programming relaxations for linear semi-infinite polynomial programming. OALib J, online (http://www.oalib.com/paper/3855833#.WSRhOdztbX4)

  • Guo P, Huang GH, He L (2008) ISMISIP: an inexact stochastic mixed integer linear semi-infinite programming approach for solid waste management and planning under uncertainty. Stoch Env Res Risk Assess 22:759–775

    Article  Google Scholar 

  • Gustafson SA (1970) On the computational solution of a class of generalized moment problems. SIAM J Numer Anal 7:343–357

    Article  Google Scholar 

  • Gustafson SA, Kortanek KO (1973) Numerical treatment of a class of semi-infinite programming problems. Nav Res Logist Quart 20:477–504

    Article  Google Scholar 

  • Haar A (1924) Über lineare ungleichungen (in German). Acta Math Szeged 2:1–14

    Google Scholar 

  • Hayashi S, Okuno T, Ito Y (2016) Simplex-type algorithm for second-order cone programmes via semi-infinite programming reformulation. Optim Met Soft 31:1272–1297

    Article  Google Scholar 

  • He L, Huang GH (2008) Optimization of regional waste management systems based on inexact semi-infinite programming. Can J Civil Eng 35:987–998

    Article  Google Scholar 

  • He L, Huang GH, Lu H (2011) Bivariate interval semi-infinite programming with an application to environmental decision-making analysis. Eur J Oper Res 211:452–465

    Article  Google Scholar 

  • Henrion R, Roemisch W (2017) Optimal scenario generation and reduction in stochastic programming. Preprint (https://www.researchgate.net/publication/316038597)

  • Hu H (1994) A projection method for solving infinite systems of linear inequalities. In: Du D-Z, Sun J (eds) Advances in optimization and approximation. Kluwer, Dordrecht, pp 186–194

    Chapter  Google Scholar 

  • Huang GH, He L, Zeng GM, Lu HW (2008) Identification of optimal urban solid waste flow schemes under impacts of energy prices. Env Eng Sci 25:685–695

    Article  Google Scholar 

  • Huynh DBP, Rozza G, Sen S, Patera AT (2007) A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C R Math Acad Sci Paris 345:473–478

    Article  Google Scholar 

  • Ioffe AD (1979) Necessary and sufficient conditions for a local minimum. I. A Reduction theorem and first order conditions. SIAM J Control Optim 17:245–250

    Article  Google Scholar 

  • Jeroslow RG (1979) Some relaxation methods for linear inequalities. Cahiers du Cero 21:43–53

    Google Scholar 

  • Jeyakumar V, Li GY, Lee GM (2011) A robust von Neumann minimax theorem for zero-sum games under bounded payoff uncertainty. Oper Res Lett 39:109–114

    Article  Google Scholar 

  • Jinglai S (2012) Positive invariance of constrained affine dynamics and its applications to hybrid systems and safety verification. IEEE Trans Autom Control 57:3–18

    Article  Google Scholar 

  • Karimi A, Galdos G (2010) Fixed-order \(H_{\infty }\) controller design for nonparametric models by convex optimization. Automatica 46:1388–1394

    Article  Google Scholar 

  • Kashyap H, Ahmed HA, Hoque N, Roy S, Bhattacharyya DK (2016) Big data analytics in bioinformatics: architectures, techniques, tools and issues. Netw Model Anal Health Inform Bioinf 5:28

    Article  Google Scholar 

  • Klabjan D, Adelman D (2007) An infinite-dimensional linear programming algorithm for deterministic semi-Markov decision processes on Borel spaces. Math Oper Res 32:528–550

    Article  Google Scholar 

  • Klatte D, Kummer B (2002) Nonsmooth equations in optimization: regularity, calculus, methods and applications. Kluwer, Dordrecht

    Google Scholar 

  • Klatte D, Kummer B (2009) Optimization methods and stability of inclusions in Banach spaces. Math Program 117B:305–330

    Article  Google Scholar 

  • Kortanek KO (1974) Classifying convex extremum problems over linear topologies having separation properties. J Math Anal Appl 46:725–755

    Article  Google Scholar 

  • Kortanek KO (2001) On the 1962–1972 decade of semi-infinite programming: a subjective view. In: Goberna MA, López MA (eds) Semi-infinite programming: recent advances. Kluwer, Dordrecht, pp 3–34

    Chapter  Google Scholar 

  • Kortanek KO, Zhang Q (2016) Extending the mixed algebraic-analysis Fourier-Motzkin elimination method for classifying linear semi-infinite programmes. Optimization 65:707–727

    Article  Google Scholar 

  • Kruger AY, Van Ngai H, Théra M (2010) Stability of error bounds for convex constraint systems in Banach spaces. SIAM J Optim 20:3280–3296

    Article  Google Scholar 

  • Larriqueta M, Vera de Serio VN (2014) On metric regularity and the boundary of the feasible set in linear optimization. Set-Valued Var Anal 22:1–17

    Article  Google Scholar 

  • Lasserre JB (2012) An algorithm for semi-infinite polynomial optimization. Top 20:119–129

    Article  Google Scholar 

  • Leibfritz F, Maruhn JH (2009) A successive SDP-NSDP approach to a robust optimization problem in finance. Comput Optim Appl 44:443–466

    Article  Google Scholar 

  • Li MH, Meng KW, Yang XQ (2016) On error bound moduli for locally Lipschitz and regular functions. Manuscript (arXiv:1608.03360v1) [math.OC]

  • Li C, Ng KF, Pong TK (2008) Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM J Optim 19:163–187

    Article  Google Scholar 

  • Li X, Lu H, He L, Shi B (2014) An inexact stochastic optimization model for agricultural irrigation management with a case study in China. Stoch Env Res Risk 28A:281–295

    Article  Google Scholar 

  • Liu Y (2016) New constraint qualification and optimality for linear semi-infinite programing. Pac J Optim 12:223–232

    Google Scholar 

  • Liu Y, Ding MF (2014) A ladder method for semi-infinite programming. J Ind Manag Optim 10:397–412

    Article  Google Scholar 

  • Liu Y, Goberna MA (2016) Asymptotic optimality conditions for linear semi-infinite programming. Optimization 65:387–414

    Article  Google Scholar 

  • López MA (2012) Stability in linear optimization and related topics. A personal tour. Top 20:217–244

    Google Scholar 

  • López MA, Still G (2007) Semi-infinite programming. Eur J Oper Res 180:491–518

    Article  Google Scholar 

  • Lou Y, Yin Y, Lawphongpanich S (2010) Robust congestion pricing under boundedly rational user equilibrium. Transp Res Part B: Methodol 44:15–28

    Article  Google Scholar 

  • Luo Z-Q, Roos C, Terlaky T (1999) Complexity analysis of a logarithmic barrier decomposition method for semi-infinite linear programming. Appl Numer Math 29:379–394

    Article  Google Scholar 

  • Mangasarian OL (2004) Knowledge-based linear programming. SIAM J Optim 12:375–382

    Google Scholar 

  • Mangasarian OL, Wild EW (2007) Nonlinear knowledge in kernel approximation. IEEE Trans Neural Netw 18:300–306

    Article  Google Scholar 

  • Mangasarian OL, Wild EW (2008) Nonlinear knowledge-based classification. IEEE Trans Neural Netw 19:1826–1832

    Article  Google Scholar 

  • Martínez-Legaz JE, Todorov MI, Zetina C (2014) \(\gamma \) -Active constraints in convex semi-infinite programming. Numer Funct Anal Appl 35:1078–1094

    Article  Google Scholar 

  • Maruhn JH (2009) Robust static super-replication of barrier options. De Gruyter, Berlin

    Book  Google Scholar 

  • Miao DY, Li YP, Huang GH, Yang ZF (2014) Optimization model for planning regional water resource systems under ucertainty. J Water Resour Plan Manag 140:238–249

    Article  Google Scholar 

  • Mordukhovich BS (2006) Variational analysis and generalized differentiation, I: basic theory. Springer, Berlin

    Google Scholar 

  • Motzkin TS, Schoenberg IJ (1954) The relaxation method for linear inequalities. Can J Math 6:393–404

    Article  Google Scholar 

  • Ochoa PD, de Vera Serio VN (2012) Stability of the primal-dual partition in linear semi-infinite programming. Optimization 61:1449–1465

    Article  Google Scholar 

  • Oskoorouchi MR, Ghaffari HR, Terlaky T, Aleman DM (2011) An interior point constraint generation algorithm for semi-infinite optimization with health-care application. Oper Res 59:1184–1197

    Article  Google Scholar 

  • Ozogur S, Weber G-W (2010a) On numerical optimization theory of infinite kernel learning. J Global Optim 48:215–239

    Article  Google Scholar 

  • Ozogur S, Weber G-W (2010b) Infinite kernel learning via infinite and semi-infinite programming. Optim Meth Soft 25:937–970

    Article  Google Scholar 

  • Ozogur S, Ustunkar G, Weber G-W (2016) Adapted infinite kernel learning by multi-local algorithm. Int J Patt Recogn Artif Intell 30:1651004

    Article  Google Scholar 

  • Peña J, Vera JC, Zuluaga LF (2010) Static-arbitrage lower bounds on the prices of basket options via linear programming. Quant Finance 10:819–827

    Article  Google Scholar 

  • Powell MJD (1990) Karmarkar’s algorithm: a view from nonlinear programming. Bull Inst Math Appl 26:165–181

    Google Scholar 

  • Prékopa A (2009) Inequalities for discrete higher order convex functions. J Math Inequal 3:485–498

    Article  Google Scholar 

  • Prékopa A, Ninh A, Alexe G (2016) On the relationship between the discrete and continuous bounding moment problems and their numerical solutions. Ann Oper Res 238:521–575

    Article  Google Scholar 

  • Priyadarsini PI, Devarakonda N, Babu IR (2013) A chock-full survey on support vector machines. Int J Adv Res Comput Sci Soft Eng 3:780–799

    Google Scholar 

  • Puente R, Vera de Serio VN (1999) Locally Farkas-Minkowski linear semi-infinite systems. Top 7:103–121

    Article  Google Scholar 

  • Remez E (1934) Sur la détermination des polynômes d’approximation de degré donné (in French). Commun Soc Math Kharkoff and Inst Sci Math et Mecan 10:41–63

    Google Scholar 

  • Robinson SM (1981) Some continuity properties of polyhedral multifunctions. Mathematical programming at Oberwolfach (Proc. Conf., Math. Forschungsinstitut, Oberwolfach, 1979). Math Program Stud 14:206–214

    Article  Google Scholar 

  • Rockafellar RT, Wets RJB (1998) Variational analysis. Springer, Berlin

    Book  Google Scholar 

  • Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch Comput Meth Eng 15:229–275

    Article  Google Scholar 

  • Rubinstein GS (1981) A comment on Voigt’s paper “a duality theorem for linear semi-infinite programming” (in Russian). Optimization 12:31–32

    Google Scholar 

  • Shani B, Solan E (2014) Strong approachability. J Dyn Games 71:507–535

    Article  Google Scholar 

  • Singh C, Sarkar S, Aram A, Kumar A (2012) Cooperative profit sharing in coalition-based resource allocation in wireless networks. IEEE/ACM Trans Netw 20B:69–83

    Article  Google Scholar 

  • Sommer B, Dingersen T, Gamroth C, Schneider SE, Rubert S, Krüger J, Dietz KJ (2009) CELLmicrocosmos 2.2 MembraneEditor: A modular interactive shape-based software approach to solve heterogenous membrane packing problems. J Chem Inf Model 5:1165–1182

    Google Scholar 

  • Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7:1531–1565

    Google Scholar 

  • Stein O (2012) How to solve a semi-infinite optimization problem. Eur J Oper Res 223:312–320

    Article  Google Scholar 

  • Suakkaphong N, Dror M (2011) Managing decentralized inventory and transshipment. Top 19:480–506

    Google Scholar 

  • Summerfield NS, Dror M (2012) Stochastic pogramming for decentralized newsvendor with transshipment. Int J Prod Econ 137:292–303

    Article  Google Scholar 

  • Tan M, Tsang IW, Wang L (2014) Towards ultrahigh dimensional feature selection for big data. J Mach Learn Res 15:1371–1429

    Google Scholar 

  • Thibault L (1997) Sequential convex subdifferential calculus and sequential Lagrange multipliers. SIAM J Control Optim 35:1434–1444

    Article  Google Scholar 

  • Tian Y (2013) Strategy-proof and efficient ofline interval scheduling and cake. In: Chen Y, Immorlica N (eds) Web and internet economics. Springer, New York, pp 436–437

    Chapter  Google Scholar 

  • Tian Y, Shi Y, Liu X (2012) Recent advances on support vector machines research. Tech Econ Develop Econ 18:5–33

    Article  Google Scholar 

  • Todd MJ (1994) Interior-point algorithms for semi-infinite programming. Math Program 65A:217–245

    Article  Google Scholar 

  • Todorov MI (1985/86) Generic existence and uniqueness of the solution set to linear semi-infinite optimization problems. Numer Funct Anal Optim 8:27–39

  • Tong X, Ling Ch, Qi L (2008) A semi-infinite programming algorithm for solving optimal power flow with transient stability constraints. J Comput Appl Math 217:432–447

    Article  Google Scholar 

  • Tong X, Wu S-Yi, Zhou R, (2010) New approach for the nonlinear programming with transient stability constraints arising from power systems. Comput Optim Appl 45:495–520

  • Tunçel L, Todd MJ (1996) Asymptotic behavior of interior-point methods: a view from semi-infinite programming. Math Oper Res 21:354–381

    Article  Google Scholar 

  • Uhan NA (2015) Stochastic linear programming games with concave preferences. Eur J Oper Res 243:637–646

    Article  Google Scholar 

  • Vanderbei RJ (1995) Affine-scaling trajectories associated with a semi-infinite linear program. Math Oper Res 20:163–174

    Article  Google Scholar 

  • Vaz A, Fernandes E, Gomes M (2003) A sequential quadratic programming with a dual parametrization approach to nonlinear semiinfinite programming. Top 11:109–130

    Article  Google Scholar 

  • Vaz A, Fernandes E, Gomes M (2004) SIPAMPL: semi-infinite programming with AMPL. ACM Trans Math Soft 30:47–61

    Article  Google Scholar 

  • Vercher E (2008) Portfolios with fuzzy returns: selection strategies based on semi-infinite programming. J Comput Appl Math 217:381–393

    Article  Google Scholar 

  • Vinh NT, Kim DS, Tam NN, Yen ND (2016) Duality gap function in infinite dimensional linear programming. J Math Anal Appl 437:1–15

    Article  Google Scholar 

  • Wang Y, Ni H (2012) Multivariate convex support vector regression with semi-definite programming. Knowl-Based Syst 30:87–94

    Article  Google Scholar 

  • Wu S-Y, Li DH, Qi LQ, Zhou GL (2005) An iterative method for solving KKT system of the semi-infinite programming. Opt Meth Soft 20:629–643

    Article  Google Scholar 

  • Xu Y, Sun W, Qi LQ (2015) On solving a class of linear semi-infinite programming by SDP method. Optimization 64:603–616

    Google Scholar 

  • Yamangil E, Altinel IK, Çekyay B, Feyzioğlu O, Özekici S (2011) Design of optimum component test plans in the demonstration of diverse system performance measures. IIE Trans 43:535–546

    Article  Google Scholar 

  • Yiu KFC, Gao MJ, Shiu TJ, Wu SY, Tran T, Claesson I (2013) A fast algorithm for the optimal design of high accuracy windows in signal processing. Optim Meth Softw 28:900–916

    Article  Google Scholar 

  • Zălinescu C (2002) Convex analysis in general vector spaces. World Scientific, Singapore

    Book  Google Scholar 

  • Zhang L, Wu S-Y, López MA (2010) A new exchange method for convex semi-infinite programming. SIAM J Optim 20:2959–2977

    Article  Google Scholar 

  • Zheng XY, Ng KF (2003) Metric regularity and constraint qualifications for convex inequalities on Banach spaces. SIAM J Optim 14:757–772

    Article  Google Scholar 

  • Zhu Y, Huang GH, Li YP, He L, Zhang XX (2011) An interval full-infinite mixed-integer programming method for planning municipal energy systems: a case study of Beijing. Appl Energy 88:2846–2862

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to the Editors-in-Chief of 4OR for their kind invitation to submit a review on linear semi-infinite optimization and, in particular, to Michel Grabisch for his valuable comments and suggestions on the preliminary versions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Goberna.

Additional information

This work was supported by the MINECO of Spain and ERDF of EU, Grant MTM2014-59179-C2-1-P, and by the Australian Research Council, Project DP160100854.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goberna, M.A., López, M.A. Recent contributions to linear semi-infinite optimization. 4OR-Q J Oper Res 15, 221–264 (2017). https://doi.org/10.1007/s10288-017-0350-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10288-017-0350-6

Keywords

Mathematics Subject Classification

Navigation