Skip to main content
Log in

Semidefinite relaxations for partitioning, assignment and ordering problems

  • Invited Survey
  • Published:
4OR Aims and scope Submit manuscript

Abstract

Semidefinite optimization is a strong tool in the study of NP-hard combinatorial optimization problems. On the one hand, semidefinite optimization problems are in principle solvable in polynomial time (with fixed precision), on the other hand, their modeling power allows to naturally handle quadratic constraints. Contrary to linear optimization with the efficiency of the Simplex method, the algorithmic treatment of semidefinite problems is much more subtle and also practically quite expensive. This survey-type article is meant as an introduction for a non-expert to this exciting area. The basic concepts are explained on a mostly intuitive level, and pointers to advanced topics are given. We provide a variety of semidefinite optimization models on a selection of graph optimization problems and give a flavour of their practical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://plato.asu.edu/bench

  2. http://www.seas.upenn.edu/qaplib/

  3. http://dimacs.rutgers.edu/Challenges/

References

  • Anjos MF (2005) Semidefinite optimization approaches to satisfiability and maximum-satisfiability problems. J Satisf Boolean Model Comput 1:1–47

    Google Scholar 

  • Anjos MF, Lasserre JB (eds) (2012) Handbook on semidefinite, conic and polynomial optimization. International series in Operations Research and Management Science. Springer, Berlin

    Google Scholar 

  • Anjos MF, Kennings A, Vanelli A (2005) A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discret Optim 2:113–122

    Article  Google Scholar 

  • Applegate DL, Bixby RE, Chvátal V, Cook WJ (2006) The traveling salesman problem. A computational study. Princeton University Press, Princeton

    Google Scholar 

  • Barahona F, Grötschel M, Mahjoub A (1985) Facets of the bipartite subgraph polytope. Math Oper Res 10: 340–358

    Article  Google Scholar 

  • Barahona F, Jünger M, Reinelt G (1989) Experiments in quadratic 0–1 programming. Math Program 44: 127–137

    Article  Google Scholar 

  • Barahona F, Mahjoub A (1986) On the cut polytope. Math Program 36:157–173

    Article  Google Scholar 

  • Blekherman G, Parillo PA, Thomas R (2012) Semidefinite optimization and convex algebraic geometry. (forthcoming)

  • Buchheim C, Wiegele A, Zheng L (2009) Exact algorithms for the quadratic linear ordering problem. INFORMS JComput 22:168–177

    Article  Google Scholar 

  • Burkard RE, Dell’Amico M, Martello S (2009) Assignment problems. SIAM, Philadelphia, PA

    Book  Google Scholar 

  • Chimani M, Hungerländer P, Jünger M, Mutzel P (2011) An SDP approach to multi-level crossing minimization. In: Proceedings of algorithm engineering & experiments [ALENEX’2011]

  • de Klerk E (2002) Aspects of semidefinite programming: interior point algorithms and selected applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • de Klerk E, Pasechnik DV, Warners JP (2004) On approximate graph colouring and Max-\(k\)-Cut algorithms based on the \(\vartheta \)-function. J Comb Optim 8(3):267–294

    Article  Google Scholar 

  • De Simone C (1990) The cut polytope and the Boolean quadric polytope. Discrete Math 79(1):71–75

    Article  Google Scholar 

  • Delorme C, Poljak S (1993) Laplacian eigenvalues and the maximum cut problem. Math Program 62: 557–574

    Article  Google Scholar 

  • Deza M, Grishukhin VP, Laurent M (1993) The hypermetric cone is polyhedral. Combinatorica 13:397–411

    Article  Google Scholar 

  • Duffin RJ (1956) Infinite programs. Ann Math Stud 38:157–170

    Google Scholar 

  • Fischer I, Gruber G, Rendl F, Sotirov R (2006) Computational experience with a bundle method for semidefinite cutting plane relaxations of max-cut and equipartition. Math Program 105:451–469

    Article  Google Scholar 

  • Frieze A, Jerrum M (1997) Improved approximation algorithms for Max \(k\)-Cut and Max Bisection. Algorithmica 18(1):67–81

    Article  Google Scholar 

  • Ghaddar B, Anjos MF, Liers F (2011) A branch-and-cut algorithm based on semidefinite programming for the minimum \(k\)-partition problem. Ann Oper Res 188:155–174

    Article  Google Scholar 

  • Goemans MX, Williamson DP (1995) Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J ACM 42:1115–1145

    Article  Google Scholar 

  • Goemans MX, Williamson DP (2004) Approximation algorithms for max-3-cut and other problems via complex semidefinite programming. J Comput Syst Sci 68(2):442–470

    Article  Google Scholar 

  • Halperin E, Zwick U (2002) A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems. Random Struct Algorithms 20:382–402

    Article  Google Scholar 

  • Hastad J (1997) Some optimal inapproximability results. In: Proceedings 29th symposium on the theory of computing, pp 1–10

  • Helmberg C (2000) Fixing variables in semidefinite relaxations. SIAM J Matrix Anal Appl 21(3): 952–969

    Article  Google Scholar 

  • Helmberg C (2002) Semidefinite programming. Eur J Oper Res 137:461–482

    Article  Google Scholar 

  • Helmberg C, Rendl F (1998) Solving quadratic (0,1)-problems by semidefinite programming and cutting planes. Math Program 82:291–315

    Google Scholar 

  • Helton JW, Nie J (2010) Semidefinite representation of convex sets. Math Program (A) 122:21–64

    Article  Google Scholar 

  • Hungerländer P (2012) Semidefinite approaches to ordering problems. PhD thesis, Alpen-Adria University Klagenfurt, Austria

  • Hungerländer P, Rendl F (2012) Semidefinite relaxations of ordering problems. Math Program (B), (forthcoming)

  • Jäger G, Srivastav A (2005) Improved approximation algorithms for maximum graph partition problems. J Comb Optim 10:133–167

    Article  Google Scholar 

  • Jünger M, Lee EK, Mutzel P, Odenthal T (1997) A polyhedral approach to the multi-layer crossing minimization problem. In: GD ’97: Proceedings of the 5th international symposium on graph drawing, pp 13–24. Springer, Berlin

  • Jünger M, Mutzel P (1997) 2-layer straightline crossing minimization: performance of exact and heuristic algorithms. J Graph Algorithms Appl 1:1–25

    Article  Google Scholar 

  • Karisch SE, Rendl F (1998) Semidefinite programming and graph equipartition. Fields Inst Commun 18: 77–95

    Google Scholar 

  • Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thather JW (eds) Complexity of computer computation. Plenum Press, New York, pp 85–103

    Chapter  Google Scholar 

  • Keil JM, Brecht TB (1991) The complexity of clustering in planar graphs. J Comb Math Comb Comput 9:155–159

    Google Scholar 

  • Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49:291–307

    Google Scholar 

  • Khot S (2010) On the unique games conjecture. In: Proceedings of the 25th IEEE conference on computational complexity, pp 99–121

  • Lasserre JB (2010) Moments, positive polynomials and their applications. Imperial College Press, London

    Google Scholar 

  • Laurent M, Rendl F (2005) Semidefinite programming and integer programming. In: Aardal K, Nemhauser GL, Weismantel R (eds) Discrete optimization. Elsevier, Amsterdam, pp 393–514

    Chapter  Google Scholar 

  • Lee J, Leyffer S (eds) (2012) Mixed integer nonlinear programming. IMA volumes in applied mathematics and its applications. Springer, Berlin

  • Lovász L (1979) On the Shannon capacity of a graph. IEEE Trans Inf Theory 25:1–7

    Article  Google Scholar 

  • Lovász L (2003) Semidefinite programs and combinatorial optimization. In: Reed BA, Sales CL (eds) Recent advances in algorithms and combinatorics. CMS books in mathematics. Springer, Berlin, pp 137–194

  • Lovász L, Schrijver A (1991) Cones of matrices and set-functions and 0–1 optimization. SIAM J Optim 1:166–190

    Article  Google Scholar 

  • Malick J, Roupin F (2011) Solving k-cluster problems to optimality with semidefinite programming. Technical report, CNRS, Grenoble, France

  • Marti R, Reinelt G (2011) The linear ordering problem: exact and heuristic methods in combinatorial optimization. Applied Mathematical Sciences. Springer, Berlin

    Google Scholar 

  • Nesterov Y (1997) Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report, CORE

  • Nesterov Y, Nemirovski AS (1994) Interior point polynomial algorithms in convex programming. SIAM Publications, SIAM, Philadelphia

    Book  Google Scholar 

  • Padberg M (1989) The quadric Boolean polytope: some characteristics, facets and relatives. Math Program 45:139–172

    Article  Google Scholar 

  • Pardalos PM, Rodgers GP (1990) Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45:131–144

    Article  Google Scholar 

  • Rendl F (2009) Semidefinite relaxations for integer programming. In: Jünger M, Liebling ThM, Naddef D, Nemhauser GL, Pulleyblank WR, Reinelt G, Rinaldi G, Wolsey LA (eds) 50 years of integer programming 1958–2008. Springer, Berlin, pp 687–726

    Google Scholar 

  • Rendl F, Rinaldi G, Wiegele A (2010) Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math Program 212:307–335

    Article  Google Scholar 

  • Rendl F, Sotirov R (2007) Bounds for the quadratic assignment problem using the bundle method. Math Program (B) 109:505–524

    Article  Google Scholar 

  • Roupin F (2004) From linear to semidefinite programming: an algorithm to obtain semidefinite relaxations for bivalent quadratic problems. J Comb Optim 8:469–493

    Article  Google Scholar 

  • Schrijver A (2003) Combinatorial optimization. Polyhedra and efficiency A, volume 24 of algorithms and combinatorics. Springer, Berlin

    Google Scholar 

  • Sherali HD, Adams WP (1990) A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J Discrete Math 3(3):411–430

    Article  Google Scholar 

  • Sherali HD, Adams WP (1994) A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Appl Math 52(1):83–106

    Article  Google Scholar 

  • Shor NZ (1987) An approach to obtaining global extremums in polynomial mathematical programming problems. Kibernetika 5:102–106

    Google Scholar 

  • Tunçel L (2010) Polyhedral and semidefinite programming methods in combinatorial optimization. Fields Institute Monographs. American Mathematical Society, Providence, RI

    Google Scholar 

  • Vallentin F (2008) Lecture notes: semidefinite programs and harmonic analysis. Technical report. Tilburg University, The Netherlands

  • Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38:49–95

    Article  Google Scholar 

  • Wolkowicz H, Saigal R, Vandenberghe L (eds) (2000) Handbook of semidefinite programming. Kluwer, Dordrecht

    Google Scholar 

  • Zhao Q, Karisch SE, Rendl F, Wolkowicz H (1998) Semidefinite programming relaxations for the quadratic assignment problem. J Comb Optim 2:71–109

    Article  Google Scholar 

  • Zhao X, Sun D, Toh K (2010) A Newton CG augmented Lagrangian method for semidefinite programming. SIAM J Optim 20:1737–1765

    Article  Google Scholar 

Download references

Acknowledgments

I thank Miguel Anjos and an anonymous referee for giving numerous suggestions to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rendl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendl, F. Semidefinite relaxations for partitioning, assignment and ordering problems. 4OR-Q J Oper Res 10, 321–346 (2012). https://doi.org/10.1007/s10288-012-0210-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10288-012-0210-3

Keywords

MSC classification

Navigation