4OR

, Volume 8, Issue 2, pp 195–211 | Cite as

The small world of efficient solutions: empirical evidence from the bi-objective {0,1}-knapsack problem

  • Carlos Gomes da Silva
  • João Clímaco
  • Adiel Almeida Filho
Research Paper

Abstract

The small world phenomenon, Milgram (1967) has inspired the study of real networks such as cellular networks, telephone call networks, citation networks, power and neural networks, etc. The present work is about the study of the graphs produced by efficient solutions of the bi-objective {0,1}-knapsack problem. The experiments show that these graphs exhibit properties of small world networks. The importance of the supported and non-supported solutions in the entire efficient graph is investigated. The present research could be useful for developing more effective search strategies in both exact and approximate solution methods of {0,1} multi-objective combinatorial optimization problems.

Keywords

Networks Small world measures {0, 1} Multi-objective combinatorial optimization problems 

MSC classification (2000)

90C27 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghezzaf B, Naimi M (2009) The two-stage recombination operator and its application to the multi-objective 0/1 knapsack problem: a comparative study. Comp Oper Res 36: 3247–3262CrossRefGoogle Scholar
  2. Albert R, Barabási A (2002) Statistical mechanics of complex networks. Rev Mod Phys 74: 47–97CrossRefGoogle Scholar
  3. Albert R, Jeong H, Barabási A (1999) Diameter of the world-wide web. Nature 401: 130CrossRefGoogle Scholar
  4. Amaral L, Scala A, Barthélémy M, Stanley H (2000) Classes of small world networks. Proc Natl Acad Sci 97(21): 11149–11152CrossRefGoogle Scholar
  5. Bazgan C, Hugot H, Vanderpooten D (2009a) Implementing an efficient fptas for the 0-1 multi-objective knapsack problem. Eur J Oper Res 198(1): 47–56CrossRefGoogle Scholar
  6. Bazgan C, Hugot H, Vanderpooten D (2009b) Solving efficiently the 0-1 multi-objective knapsack problem. Comp Oper Res 36: 260–279CrossRefGoogle Scholar
  7. Beier R, Röglin H, Vöcking B (2007) The smoothed number of pareto optimal solutions in bicriteria integer optimization. Lect Notes Comput Sci 4153: 53–67Google Scholar
  8. Captivo M, Clímaco J, Figueira J, Martins E, Santos JL (2003) Solving multiple criteria 0,1-knapsack problems using a labeling algorithm. Comp Oper Res 30: 1865–1886CrossRefGoogle Scholar
  9. Cohon J (1978) Multi-objective programming and planning. Academic Press, LondonGoogle Scholar
  10. Dorogovtesv S, Mendes F (2003) Evolution of networks—from biology nets to the internet and WWW. Oxford University Press, OxfordGoogle Scholar
  11. Ehrgott M, Klamroth K (1997) Connectedness of efficient solutions in multicriteria combinatorial optimization. Eur J Oper Res 97(1): 159–166CrossRefGoogle Scholar
  12. Erdös P, Rényi A (1959) On random graph. Publ Math 6: 290–297Google Scholar
  13. Gomes da Silva C (2005) Finding the set of non-dominated solutions in the bi-objective 0,1-knapsack: an approach with meta-heuristics and exact methods. PhD thesis, Faculty of Economics, University of CoimbraGoogle Scholar
  14. Gomes da Silva C, Clímaco J (2008) Finding communities in the efficient solutions network. Technical report, Institute for Systems and Computers Engineering, Coimbra, PortugalGoogle Scholar
  15. Gomes da Silva C, Clímaco J, Figueira J (2004) Geometrical configuration of the pareto frontier of bi-criteria 0,1-knapsack problems. Technical report, Institute for Systems and Computers Engineering, Coimbra, PortugalGoogle Scholar
  16. Gomes da Silva C, Clímaco J, Figueira J (2006) A scatter search method dedicated to the bi-objective knapsack problems. Eur J Oper Res 169(2): 373–391CrossRefGoogle Scholar
  17. Gomes da Silva C, Clímaco J, Figueira J (2008) Core problems in bi-objective 0-1 knapsack problems. Comp Oper Res 35(7): 2292–2306CrossRefGoogle Scholar
  18. Gomes da Silva C, Figueira J, Clímaco J (2007) Integrating partial optimization with scatter search for solving bi-objective 0,1-knapsack problems. Eur J Oper Res 177: 1656–1677CrossRefGoogle Scholar
  19. Gorski J, Klamroth K, Ruzika S (2006) Connectedness of efficient solutions in multiple objective combinatorial optimization. Technical report, Department of Mathematics, University of KaiserslauternGoogle Scholar
  20. Huberman B, Adamic L (2000) Growth dynamics of the world-wide web. Nature 401: 131Google Scholar
  21. Klamroth K, Wiecek M (2000) Dynamic programming approaches to the multiple criteria knapsack problem. Nav Res Logist 47(1): 57–76CrossRefGoogle Scholar
  22. Martello S, Toth P (1990) Knapsack problems—algorithms and computer implementations. Wiley, New YorkGoogle Scholar
  23. Milgram S (1967) The small world problem. Psychol Today 1(1): 60–67Google Scholar
  24. Newman M, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69: 026113.1–026113.15Google Scholar
  25. Ruzika S (2008) On multiple objective combinatorial optimization. PhD thesis, Department of Mathematics, University of KaisreslauternGoogle Scholar
  26. Steuer R (1986) Multiple criteria optimization, theory, computation and application. Wiley, New YorkGoogle Scholar
  27. Visée M, Teghem J, Pirlot M, Ulungu E (1998) Two phases method and branch and bound procedures to solve the bi-objective knapsack problem. J Glob Optim 12: 139–155CrossRefGoogle Scholar
  28. Zhang CW, Ong HL (2004) Solving the biobjective zero-one knapsack problem by an efficient lp-based heuristic. Eur J Oper Res 159: 545–557CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Carlos Gomes da Silva
    • 1
    • 2
  • João Clímaco
    • 2
    • 3
  • Adiel Almeida Filho
    • 4
  1. 1.Escola Superior de Tecnologia e Gestão de Leiria do Lena, Alto VieiroLeiriaPortugal
  2. 2.INESC-CoimbraCoimbraPortugal
  3. 3.Faculdade de EconomiaUniversidade de CoimbraCoimbraPortugal
  4. 4.Federal University of PernambucoRecifeBrazil

Personalised recommendations