Skip to main content

On the use of graphs in discrete tomography

Abstract

In this tutorial paper, we consider the basic image reconstruction problem which stems from discrete tomography. We derive a graph theoretical model and we explore some variations and extensions of this model. This allows us to establish connections with scheduling and timetabling applications. The complexity status of these problems is studied and we exhibit some polynomially solvable cases. We show how various classical techniques of operations research like matching, 2-SAT, network flows are applied to derive some of these results.

This is a preview of subscription content, access via your institution.

References

  • Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Alfandari L, Lemalade JL, Nagih A, Plateau G (2008) A MIP flow model for crop-rotation planning in a context of forest sustainable development (submitted)

  • Alpers A, Rodek L, Poulsen HF, Knudsen E, Herman GT (2007) Discrete tomography for generating maps of polycrystals. In: Herman GT, Kuba A (eds) Advances in discrete tomography and its applications. Birkhauser, Boston, pp 271–301

    Chapter  Google Scholar 

  • Aspvall B, Plass MF, Tarjan R (1979) A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inform Process Lett 8: 121–123

    Article  Google Scholar 

  • Batenburg KJ (2007) Network flow algorithms for discrete tomography. In: Herman GT, Kuba A (eds) Advances in discrete tomography and its applications. Birkhauser, Boston, pp 175–207

    Chapter  Google Scholar 

  • Baumann J, Kiss Z, Krimmel S, Kuba A, Nagy A, Rodek L, Schillinger B, Stephan J (2007) Discrete tomography methods for nondestructive testing. In: Herman GT, Kuba A (eds) Advances in discrete tomography and its applications. Birkhauser, Boston, pp 303–332

    Chapter  Google Scholar 

  • Bentz C, Costa M-C, de Werra D, Picouleau C, Ries B (2008) On a graph coloring problem arising from discrete tomography. Networks (to appear)

  • Bentz C, Costa M-C, de Werra D, Picouleau C, Ries B (2007) Degree-constrained edge partitioning in graphs arising from discrete tomography. Technical Report ORWP 07/03

  • Berge C (1983) Graphes. Gauthier-Villars, Paris

    Google Scholar 

  • Brocchi S, Frosini A, Picouleau C (2007) Reconstruction of binary matrices under fixed size neighborhood constraints (submitted)

  • Chrobak M, Dürr C (2001) Reconstructing polyatomic structures from X-rays: NP-completeness proof for three atoms. Theor Comput Sci 259(1): 81–98

    Article  Google Scholar 

  • Costa M-C, de Werra D, Picouleau C (2006a) Using graphs for some discrete tomography problems. Discrete Appl Math 154: 35–46

    Article  Google Scholar 

  • Costa M-C, de Werra D, Picouleau C, Ries B (2006b) Graph coloring with cardinality constraints on the neighborhood. Technical report ORWP 06/08

  • Costa M-C, de Werra D, Picouleau C, Schindl D (2005) A solvable case of image reconstruction in discrete tomography. Discrete Appl Math 148: 240–245

    Article  Google Scholar 

  • Déroche G (1986) Guy Dupuy: sculpteur discret. Horizons d’Argonne 52: 104–105

    Google Scholar 

  • Déroche G (2003) Tomographie agricole des vallées de l’Aisne et de l’Aire. Horizons d’Argonne 80: 17–20

    Google Scholar 

  • Di Gesù V, Kuba A (eds) (2005) Special issue: IWCIA 2003, Ninth International Workshop on Combinatorial Image Analysis. Discrete Appl Math 151:3

  • Even S, Itai A, Shamir A (1976) On the complexity of timetable and multicommodity flow problems. SIAM J Comput 5: 691–703

    Article  Google Scholar 

  • Gabow H, Nishizeki T, Kariv O, Leven D, Tereda O (1985) Algorithms for edge-coloring. Technical report 41/85, Tel Aviv University

  • Gardner RJ (2006) Geometric Tomography, 2nd edn. Cambridge University Press, New York, NY

    Google Scholar 

  • Garey M, Johnson DS (1979) Computer and intractability. Freeman, San Francisco

    Google Scholar 

  • Hansen P, de Werra D (1997) Nesticity, DIMACS Series. Discrete Math Theor Comput Sci 37: 225–232

    Google Scholar 

  • Herman GT, Kuba A (1999b) Discrete tomography: a historical overview. In: Herman GT, Kuba A (eds) Discrete tomography: foundations, algorithms and applications. Birkhauser, Boston, pp 3–34

    Google Scholar 

  • Herman, GT, Kuba, A (eds) (1999a) Discrete tomography: foundations, algorithms and applications. Birkhauser, Boston

    Google Scholar 

  • Herman, GT, Kuba, A (eds) (2007) Advances in discrete tomography and its applications. Birkhauser, Boston

    Google Scholar 

  • Holyer I (1981) NP-completeness of edge-coloring. SIAM J Comput 10: 718–720

    Article  Google Scholar 

  • Kaneko A, Nagahama R (2006) Reconstruction algorithm and switching graph for two-projection tomography with prohibited subregion. In: Proceedings of the 13th international conference on discrete geometry for computer imagery, Szeged, Hungary, pp 110–121

  • Lovasz L, Plummer M (1986) Matching theory. North Holland, USA

    Google Scholar 

  • Martinis R, Socco LV, Sambuelli L, Nicolotti G, Schmitt O, Bucur V (2004) Tomographie ultrasonore pour les arbres sur pied. Ann Forest Sci 61: 157–162

    Article  Google Scholar 

  • Ryser HJ (1957) Combinatorial properties of matrices of zeros and ones. Can J Math 9: 371–377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique de Werra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Werra, D., Costa, MC., Picouleau, C. et al. On the use of graphs in discrete tomography. 4OR 6, 101–123 (2008). https://doi.org/10.1007/s10288-008-0077-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10288-008-0077-5

Keywords

  • Discrete tomography
  • Complete bipartite graph
  • Edge coloring
  • Timetabling
  • Constrained coloring
  • Scheduling

MSC classification (2000)

  • 05C15
  • 05C85
  • 90-01
  • 52C99