Skip to main content

Advertisement

Log in

A hybrid dynamic programming - Tabu Search approach for the long-term hydropower scheduling problem

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

The long-term energy scheduling of a large hydroelectric power system is studied in this paper. The problem aims at defining a policy that provides the best trade-off between energy conservation into the reservoir for future revenues and current energy sales with a risk of system failure in the future. The policy should take into account the uncertainty of energy inflows for the next decades. Energy inflows are obtained from water inflows using an energy aggregation process and therefore behave like hydrological time series. Long-term persistence, present in the energy inflows, especially with multiyear sequences of low and high inflows, poses a serious threat to the system’s reliability. A Shifting Level hydrological model is used to capture precisely the annual and interannual dynamic of the energy inflows. However, this model is challenging to include in the framework required by state-of-the-art optimization methods that mostly rely on the dynamic programming principle and Markovian processes. We propose a method combining stochastic dynamic programming and Tabu Search to solve the long-term energy scheduling problem without the need to find an appropriate Markovian approximation of the Shifting Level model. The policies resulting from this hybrid method are compared with stochastic dynamic programming policies coupled with a Hidden Markov Model. The results show that the hybrid method retains more energy in the reservoirs, thus reducing the volume of possible energy deficits. Overall, the objective value obtained by the hybrid method policies is higher than the value returned by the stochastic dynamic programming with the Hidden Markov Model, suggesting a better trade-off between a low risk of energy deficits and revenue maximization through high energy sales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

The study was supported by the NSERC/Hydro-Québec Industrial Research Chair in the stochastic Optimization of Electricity Generation, Hydro-Québec Production, and a Mitacs Accelerate Program grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Mbeutcha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbeutcha, Y., Gendreau, M. & Emiel, G. A hybrid dynamic programming - Tabu Search approach for the long-term hydropower scheduling problem. Comput Manag Sci 18, 385–410 (2021). https://doi.org/10.1007/s10287-021-00402-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-021-00402-y

Keywords

Navigation