Skip to main content

Advertisement

Log in

Muscarinic control of cardiovascular function in humans: a review of current clinical evidence

  • Review Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

To review the available evidence on the impact of muscarinic receptor modulation on cardiovascular control in humans.

Methods

In this narrative Review we summarize data on cardiovascular endpoints from clinical trials of novel subtype-selective or quasi-selective muscarinic modulators, mostly PAMs, performed in the last decade. We also review the cardiovascular phenotype in recently described human genetic and autoimmune disorders affecting muscarinic receptors.

Results

Recent advancements in the development of compounds that selectively target muscarinic acetylcholine receptors are expanding our knowledge about the physiological function of each muscarinic receptor subtype (M1, M2, M3, M4, M5). Among these novel compounds, positive allosteric modulators (PAMs) have emerged as the preferred therapeutic to regulate muscarinic receptor subtype function. Many muscarinic allosteric and orthosteric modulators (including but not limited to xanomeline-trospium and emraclidine) are now in clinical development and approaching regulatory approval for multiple indications, including the treatment of cognitive and psychiatric symptoms in patients with schizophrenia as well as Alzheimer’s disease and other dementias. The results of these clinical trials provide an opportunity to understand the influence of muscarinic modulation on cardiovascular autonomic control in humans. While the results and the impact of each of these therapies on heart rate and blood pressure control have been variable, in part because the clinical trials were not specifically designed to measure cardiovascular endpoints, the emerging data is valuable to elucidate the relative cardiovascular contributions of each muscarinic receptor subtype.

Conclusion

Understanding the muscarinic control of cardiovascular function is of paramount importance and may contribute to the development of novel therapeutic strategies for treating cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58

    Article  CAS  PubMed  Google Scholar 

  2. Attina TM, Oliver JJ, Malatino LS, Webb DJ (2008) Contribution of the M3 muscarinic receptors to the vasodilator response to acetylcholine in the human forearm vascular bed. Br J Clin Pharmacol 66:300–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Awad M, Czer LS, Hou M, Golshani SS, Goltche M, De Robertis M, Kittleson M, Patel J, Azarbal B, Kransdorf E, Esmailian F, Trento A, Kobashigawa JA (2016) Early denervation and later reinnervation of the heart following cardiac transplantation: a review. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.004070

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bakker C, Tasker T, Liptrot J, Hart EP, Klaassen ES, Doll RJ, Brown GA, Brown A, Congreve M, Weir M, Marshall FH, Cross DM, Groeneveld GJ, Nathan PJ (2021) Safety, pharmacokinetics and exploratory pro-cognitive effects of HTL0018318, a selective M(1) receptor agonist, in healthy younger adult and elderly subjects: a multiple ascending dose study. Alzheimers Res Ther 13:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bakker C, Tasker T, Liptrot J, Hart EP, Klaassen ES, Prins S, van der Doef TF, Brown GA, Brown A, Congreve M, Weir M, Marshall FH, Cross DM, Groeneveld GJ, Nathan PJ (2021) First-in-man study to investigate safety, pharmacokinetics and exploratory pharmacodynamics of HTL0018318, a novel M(1) -receptor partial agonist for the treatment of dementias. Br J Clin Pharmacol 87:2945–2955

    Article  CAS  PubMed  Google Scholar 

  6. Beaman GM, Galata G, Teik KW, Urquhart JE, Aishah A, O’Sullivan J, Bhaskar SS, Wood KA, Thomas HB, O’Keefe RT, Woolf AS, Stuart HM, Newman WG (2019) A homozygous missense variant in CHRM3 associated with familial urinary bladder disease. Clin Genet 96:515–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bender AM, Garrison AT, Lindsley CW (2019) The muscarinic acetylcholine receptor M(5): therapeutic implications and allosteric modulation. ACS Chem Neurosci 10:1025–1034

    Article  CAS  PubMed  Google Scholar 

  8. Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP, Hurley DJ, Potter WZ, Paul SM (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473

    Article  CAS  PubMed  Google Scholar 

  9. Borin MT, Barnes CN, Darpo B, Pendyala S, Xue H, Bourdet DL (2020) Revefenacin, a long-acting muscarinic antagonist, does not prolong QT interval in healthy subjects: results of a placebo- and positive-controlled thorough QT study. Clin Pharmacol Drug Dev 9:130–139

    Article  CAS  PubMed  Google Scholar 

  10. Brannan SK, Sawchak S, Miller AC, Lieberman JA, Paul SM, Breier A (2021) Muscarinic cholinergic receptor agonist and peripheral antagonist for schizophrenia. N Engl J Med 384:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brodde OE, Bruck H, Leineweber K, Seyfarth T (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538

    Article  CAS  PubMed  Google Scholar 

  12. Brown AJH, Bradley SJ, Marshall FH, Brown GA, Bennett KA, Brown J, Cansfield JE, Cross DM, de Graaf C, Hudson BD, Dwomoh L, Dias JM, Errey JC, Hurrell E, Liptrot J, Mattedi G, Molloy C, Nathan PJ, Okrasa K, Osborne G, Patel JC, Pickworth M, Robertson N, Shahabi S, Bundgaard C, Phillips K, Broad LM, Goonawardena AV, Morairty SR, Browning M, Perini F, Dawson GR, Deakin JFW, Smith RT, Sexton PM, Warneck J, Vinson M, Tasker T, Tehan BG, Teobald B, Christopoulos A, Langmead CJ, Jazayeri A, Cooke RM, Rucktooa P, Congreve MS, Weir M, Tobin AB (2021) From structure to clinic: design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer’s disease. Cell 184(5886–5901):e5822

    Google Scholar 

  13. Bymaster FP, Carter PA, Zhang L, Falcone JF, Stengel PW, Cohen ML, Shannon HE, Gomeza J, Wess J, Felder CC (2001) Investigations into the physiological role of muscarinic M2 and M4 muscarinic and M4 receptor subtypes using receptor knockout mice. Life Sci 68:2473–2479

    Article  CAS  PubMed  Google Scholar 

  14. Carrow DJ, Aldrete JA, Masden RR, Jackson D (1975) Effects of large doses of intravenous atropine on heart rate and arterial pressure of anesthetized patients. Anesth Analg 54:262–266

    Article  CAS  PubMed  Google Scholar 

  15. Cerevel (2022) Cerevel Therapeutics announces positive results in emraclidine ambulatory blood pressure monitoring trial (press release). https://investors.cerevel.com/news-releases/news-release-details/cerevel-therapeutics-announces-positive-results-emraclidine/

  16. Faraci FM, Sigmund CD (1999) Vascular biology in genetically altered mice: smaller vessels, bigger insight. Circ Res 85:1214–1225

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson GT, Feldman G, Pudi KK, Barnes CN, Moran EJ, Haumann B, Pendyala S, Crater G (2019) Improvements in lung function with nebulized revefenacin in the treatment of patients with moderate to very severe COPD: results from two replicate phase III clinical trials. Chronic Obstr Pulm Dis 6:154–165

    PubMed  PubMed Central  Google Scholar 

  18. Fisher A, Heldman E, Gurwitz D, Haring R, Karton Y, Meshulam H, Pittel Z, Marciano D, Brandeis R, Sadot E, Barg Y, Pinkas-Kramarski R, Vogel Z, Ginzburg I, Treves TA, Verchovsky R, Klimowsky S, Korczyn AD (1996) M1 agonists for the treatment of Alzheimer’s disease. Novel properties and clinical update. Ann N Y Acad Sci 777:189–196

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Franko BV, Ward JW, Alphin RS (1963) Pharmacologic studies of N-benzyl-3-pyrrolidyl acetate methobromide (AHR-602), a ganglion stimulating agent. J Pharmacol Exp Ther 139:25–30

    CAS  Google Scholar 

  20. Gogliotti RG, Fisher NM, Stansley BJ, Jones CK, Lindsley CW, Conn PJ, Niswender CM (2018) Total RNA sequencing of Rett syndrome autopsy samples identifies the M(4) muscarinic receptor as a novel therapeutic target. J Pharmacol Exp Ther 365:291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Nat Acad Sci U S A 96:1692–1697

    Article  ADS  CAS  Google Scholar 

  22. Gomeza J, Zhang L, Kostenis E, Felder CC, Bymaster FP, Brodkin J, Shannon H, Xia B, Duttaroy A, Deng CX, Wess J (2001) Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sci 68:2457–2466

    Article  CAS  PubMed  Google Scholar 

  23. Hardouin SN, Richmond KN, Zimmerman A, Hamilton SE, Feigl EO, Nathanson NM (2002) Altered cardiovascular responses in mice lacking the M(1) muscarinic acetylcholine receptor. J Pharmacol Exp Ther 301:129–137

    Article  CAS  PubMed  Google Scholar 

  24. Harvey RD (2012) Muscarinic receptor agonists and antagonists: effects on cardiovascular function. Handb Exp Pharmacol. https://doi.org/10.1007/978-3-642-23274-9_13

    Article  PubMed  Google Scholar 

  25. Harvey RD, Belevych AE (2003) Muscarinic regulation of cardiac ion channels. Br J Pharmacol 139:1074–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang W, Zong H, Zhou X, Zhang Y (2015) Efficacy and safety of imidafenacin for overactive bladder in adult: a systematic review and meta-analysis. Int Urol Nephrol 47:457–464

    Article  CAS  PubMed  Google Scholar 

  27. Kalsner S (1989) Cholinergic constriction in the general circulation and its role in coronary artery spasm. Circ Res 65:237–257

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Kaul I, Sawchak S, Correll CU, Kakar R, Breier A, Zhu H, Miller AC, Paul SM, Brannan SK (2023) Efficacy and safety of the muscarinic receptor agonist KarXT (xanomeline-trospium) in schizophrenia (EMERGENT-2) in the USA: results from a randomised, double-blind, placebo-controlled, flexible-dose phase 3 trial. Lancet 403:160

    Article  PubMed  Google Scholar 

  29. Kavoussi R, Miller A, Brannan S, Breier A (2017) Results of a double-blind, placebo-controlled, tolerability study of KarXT, a novel combination targeting muscarinic acetylcholine receptors using xanomeline with trospium chloride to mitigate cholinergic side effects. In: Poster presented at American Society of Clinical Psychopharmacology Annual Meeting, Miami Beach, FL, May 29–June 2, 2017

  30. Kobayashi F, Yageta Y, Segawa M, Matsuzawa S (2007) Effects of imidafenacin (KRP-197/ONO-8025), a new anti-cholinergic agent, on muscarinic acetylcholine receptors. High affinities for M3 and M1 receptor subtypes and selectivity for urinary bladder over salivary gland. Arzneimittelforschung 57:92–100

    CAS  PubMed  Google Scholar 

  31. Korczyn AD (2000) Muscarinic M(1) agonists in the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 9:2259–2267

    Article  CAS  PubMed  Google Scholar 

  32. Kruse AC, Kobilka BK, Gautam D, Sexton PM, Christopoulos A, Wess J (2014) Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 13:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krystal JH, Kane JM, Correll CU, Walling DP, Leoni M, Duvvuri S, Patel S, Chang I, Iredale P, Frohlich L, Versavel S, Perry P, Sanchez R, Renger J (2022) Emraclidine, a novel positive allosteric modulator of cholinergic M4 receptors, for the treatment of schizophrenia: a two-part, randomised, double-blind, placebo-controlled, phase 1b trial. Lancet 400:2210–2220

    Article  CAS  PubMed  Google Scholar 

  34. Lechner SG, Mayer M, Boehm S (2003) Activation of M1 muscarinic receptors triggers transmitter release from rat sympathetic neurons through an inhibition of M-type K+ channels. J Physiol 553:789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee DY, Lee MJ, Ryu C, Lee H, Brooks A (2023) Safety, tolerability, and pharmacokinetics of single and multiple ascending oral doses of DA-8010 in healthy subjects: first-in-human phase I study. Pharmacol Res Perspect 11:e01040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li F, Yang J (2019) Revefenacin for the treatment of chronic obstructive pulmonary disease. Expert Rev Clin Pharmacol 12:293–298

    Article  CAS  PubMed  Google Scholar 

  37. Lurie Y, Wasser SP, Taha M, Shehade H, Nijim J, Hoffmann Y, Basis F, Vardi M, Lavon O, Suaed S, Bisharat B, Bentur Y (2009) Mushroom poisoning from species of genus Inocybe (fiber head mushroom): a case series with exact species identification. Clin Toxicol (Phila) 47:562–565

    Article  PubMed  Google Scholar 

  38. MapLight (2023) MapLight Therapeutics announces successful completion of second phase 1 clinical trial of the novel muscarinic receptor agonist ML-007 (press release). https://maplightrx.com/agonist-ml-007/

  39. Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo MM (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Nat Acad Sci U S A 97:9579–9584

    Article  ADS  CAS  Google Scholar 

  40. Medina A, Bodick N, Goldberger AL, Mac Mahon M, Lipsitz LA (1997) Effects of central muscarinic-1 receptor stimulation on blood pressure regulation. Hypertension 29:828–834

    Article  CAS  PubMed  Google Scholar 

  41. Nathan PJ, Watson J, Lund J, Davies CH, Peters G, Dodds CM, Swirski B, Lawrence P, Bentley GD, O’Neill BV, Robertson J, Watson S, Jones GA, Maruff P, Croft RJ, Laruelle M, Bullmore ET (2013) The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int J Neuropsychopharmacol 16:721–731

    Article  CAS  PubMed  Google Scholar 

  42. Niwa Y, Kanda GN, Yamada RG, Shi S, Sunagawa GA, Ukai-Tadenuma M, Fujishima H, Matsumoto N, Masumoto KH, Nagano M, Kasukawa T, Galloway J, Perrin D, Shigeyoshi Y, Ukai H, Kiyonari H, Sumiyama K, Ueda HR (2018) Muscarinic acetylcholine receptors Chrm1 and Chrm3 are essential for REM sleep. Cell Rep 24(2231–2247):e2237

    Google Scholar 

  43. Norel X, Walch L, Costantino M, Labat C, Gorenne I, Dulmet E, Rossi F, Brink C (1996) M1 and M3 muscarinic receptors in human pulmonary arteries. Br J Pharmacol 119:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Okimoto R, Ino K, Ishizu K, Takamatsu H, Sakamoto K, Yuyama H, Fuji H, Someya A, Ohtake A, Ishigami T, Masuda N, Takeda M, Kajioka S, Yoshimura N (2021) Potentiation of muscarinic M(3) receptor activation through a new allosteric site with a novel positive allosteric modulator ASP8302. J Pharmacol Exp Ther 379:64–73

    Article  CAS  PubMed  Google Scholar 

  45. Palma JA, Benarroch EE (2014) Neural control of the heart: recent concepts and clinical correlations. Neurology 83:261–271

    Article  PubMed  Google Scholar 

  46. Palma JA, Gupta A, Sierra S, Gomes I, Balgobin B, Norcliffe-Kaufmann L, Devi LA, Kaufmann H (2020) Autoantibodies blocking M(3) muscarinic receptors cause postganglionic cholinergic dysautonomia. Ann Neurol 88:1237–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Palma JA, Kaufmann H (2018) Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies. Mov Disord 33:372–390

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pargaonkar VS, Lee JH, Chow EKH, Nishi T, Ball RL, Kobayashi Y, Kimura T, Lee DP, Stefanick ML, Fearon WF, Yeung AC, Tremmel JA (2020) Dose-response relationship between intracoronary acetylcholine and minimal lumen diameter in coronary endothelial function testing of women and men with angina and no obstructive coronary artery disease. Circ Cardiovasc Interv 13:e008587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Perez CC, Tobar ID, Jimenez E, Castaneda D, Rivero MB, Concepcion JL, Chiurillo MA, Bonfante-Cabarcas R (2006) Kinetic and molecular evidences that human cardiac muscle express non-M2 muscarinic receptor subtypes that are able to interact themselves. Pharmacol Res 54:345–355

    Article  CAS  PubMed  Google Scholar 

  50. Pomper JK, Wilhelm H, Tayebati SK, Asmus F, Schule R, Sievert KD, Haensch CA, Melms A, Haarmeier T (2011) A novel clinical syndrome revealing a deficiency of the muscarinic M3 receptor. Neurology 76:451–455

    Article  CAS  PubMed  Google Scholar 

  51. Pudi KK, Barnes CN, Moran EJ, Haumann B, Kerwin E (2017) A 28-day, randomized, double-blind, placebo-controlled, parallel group study of nebulized revefenacin in patients with chronic obstructive pulmonary disease. Respir Res 18:182

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pulido-Rios MT, McNamara A, Obedencio GP, Ji Y, Jaw-Tsai S, Martin WJ, Hegde SS (2013) In vivo pharmacological characterization of TD-4208, a novel lung-selective inhaled muscarinic antagonist with sustained bronchoprotective effect in experimental animal models. J Pharmacol Exp Ther 346:241–250

    Article  CAS  PubMed  Google Scholar 

  53. Quinn D, Barnes CN, Yates W, Bourdet DL, Moran EJ, Potgieter P, Nicholls A, Haumann B, Singh D (2018) Pharmacodynamics, pharmacokinetics and safety of revefenacin (TD-4208), a long-acting muscarinic antagonist, in patients with chronic obstructive pulmonary disease (COPD): results of two randomized, double-blind, phase 2 studies. Pulm Pharmacol Ther 48:71–79

    Article  CAS  PubMed  Google Scholar 

  54. Rhoden A, Speiser J, Geertz B, Uebeler J, Schmidt K, de Wit C, Eschenhagen T (2019) Preserved cardiovascular homeostasis despite blunted acetylcholine-induced dilation in mice with endothelial muscarinic M3 receptor deletion. Acta Physiol (Oxf) 226:e13262

    Article  PubMed  Google Scholar 

  55. Roszkowski AP (1961) An unusual type of sympathetic ganglionic stimulant. J Pharmacol Exp Ther 132:156–170

    CAS  PubMed  Google Scholar 

  56. Sakakibara R, Tateno F, Yano M, Takahashi O, Sugiyama M, Ogata T, Haruta H, Kishi M, Tsuyusaki Y, Yamamoto T, Uchiyama T, Yamanishi T, Yamaguchi C (2013) Imidafenacin on bladder and cognitive function in neurologic OAB patients. Clin Auton Res 23:189–195

    Article  PubMed  Google Scholar 

  57. Sato K, Kaikita K, Nakayama N, Horio E, Yoshimura H, Ono T, Ohba K, Tsujita K, Kojima S, Tayama S, Hokimoto S, Matsui K, Sugiyama S, Yamabe H, Ogawa H (2013) Coronary vasomotor response to intracoronary acetylcholine injection, clinical features, and long-term prognosis in 873 consecutive patients with coronary spasm: analysis of a single-center study over 20 years. J Am Heart Assoc 2:e000227

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schneider S, Schierbaum L, Burger WAC, Seltzsam S, Wang C, Zheng B, Wu CW, Nakayama M, Connaughton DM, Mann N, Shalaby MA, Kari JA, ElDesoky S, Tasic V, Eid LA, Shril S, Thal DM, Hildebrandt F (2023) Recessive CHRM5 variant as a potential cause of neurogenic bladder. Am J Med Genet A 191:2083–2091

    Article  CAS  PubMed  Google Scholar 

  59. Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dube S, Mallinckrodt C, Bymaster FP, McKinzie DL, Felder CC (2008) Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165:1033–1039

    Article  PubMed  Google Scholar 

  60. Son HS, Oh CY, Choo MS, Kim HG, Kim JC, Lee KS, Shin DG, Cho SY, Jeong SJ, Seo JT, Yoon H, Moon HS, Kim JH (2022) Efficacy and safety of DA-8010, a novel M3 antagonist, in patients with overactive bladder: a randomized, double-blind phase 2 study. Int Neurourol J 26:119–128

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sosei-Heptares (2022) Sosei Heptares’ oral, selective M4 receptor agonist advancing into phase 2 clinical development under multi-program collaboration with Neurocrine Biosciences (press release). https://soseiheptares.com/news/787/129/Sosei-Heptares-Oral-Selective-M4-Receptor-Agonist-Advancing-into-Phase-2-Clinical-Development-under-Multi-Program-Collaboration-with-Neurocrine-Biosciences.html

  62. Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292:877–885

    CAS  PubMed  Google Scholar 

  63. Thorn CA, Moon J, Bourbonais CA, Harms J, Edgerton JR, Stark E, Steyn SJ, Butler CR, Lazzaro JT, O’Connor RE, Popiolek M (2019) Striatal, hippocampal, and cortical networks are differentially responsive to the M4- and M1-muscarinic acetylcholine receptor mediated effects of xanomeline. ACS Chem Neurosci 10:3910

    Article  CAS  PubMed  Google Scholar 

  64. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419

    Article  PubMed  Google Scholar 

  65. van Till JWO, Arita E, Kuroishi K, Croy R, Oelke M, van Koeveringe GA, Chapple CR, Yamaguchi O, Abrams P (2022) Muscarinic-3-receptor positive allosteric modulator ASP8302 in patients with underactive bladder. A randomized controlled trial. Neurourol Urodyn 41:1139–1148

    Article  PubMed  Google Scholar 

  66. Vanhoutte PM (2019) Endothelial muscarinic M(3)-receptors: a sigma-target? Acta Physiol (Oxf) 226:e13273

    Article  PubMed  Google Scholar 

  67. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH (2017) Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 219:22–96

    Article  CAS  PubMed  Google Scholar 

  68. Voss T, Li J, Cummings J, Farlow M, Assaid C, Froman S, Leibensperger H, Snow-Adami L, McMahon KB, Egan M, Michelson D (2018) Randomized, controlled, proof-of-concept trial of MK-7622 in Alzheimer’s disease. Alzheimers Dement (N Y) 4:173–181

    Article  PubMed  Google Scholar 

  69. Walch L, Gascard JP, Dulmet E, Brink C, Norel X (2000) Evidence for a M(1) muscarinic receptor on the endothelium of human pulmonary veins. Br J Pharmacol 130:73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang H, Han H, Zhang L, Shi H, Schram G, Nattel S, Wang Z (2001) Expression of multiple subtypes of muscarinic receptors and cellular distribution in the human heart. Mol Pharmacol 59:1029–1036

    Article  CAS  PubMed  Google Scholar 

  71. Wang Z, Shi H, Wang H (2004) Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol 142:395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weber J, Keating GM (2008) Cevimeline. Drugs 68:1691–1698

    Article  CAS  PubMed  Google Scholar 

  73. Weber S, Thiele H, Mir S, Toliat MR, Sozeri B, Reutter H, Draaken M, Ludwig M, Altmuller J, Frommolt P, Stuart HM, Ranjzad P, Hanley NA, Jennings R, Newman WG, Wilcox DT, Thiel U, Schlingmann KP, Beetz R, Hoyer PF, Konrad M, Schaefer F, Nurnberg P, Woolf AS (2011) Muscarinic acetylcholine receptor M3 mutation causes urinary bladder disease and a prune-belly-like syndrome. Am J Hum Genet 89:668–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    Article  CAS  PubMed  Google Scholar 

  75. Wilson C, Lee MD, McCarron JG (2016) Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J Physiol 594:7267–7307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, McKinzie DL, Felder CC, Deng CX, Faraci FM, Wess J (2001) Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A 98:14096–14101

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, Ogawa M, Chou CJ, Xia B, Crawley JN, Felder CC, Deng CX, Wess J (2001) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410:207–212

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Yin W, Mamashli F, Buhl DL, Khudyakov P, Volfson D, Martenyi F, Gevorkyan H, Rosen L, Simen AA (2022) Safety, pharmacokinetics and quantitative EEG modulation of TAK-071, a novel muscarinic M1 receptor positive allosteric modulator, in healthy subjects. Br J Clin Pharmacol 88:600–612

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by NIH R01NS107596-03, National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose-Alberto Palma.

Ethics declarations

Conflict of interest

Research funding from NIH. Salary from Eli Lilly and Co.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, JA. Muscarinic control of cardiovascular function in humans: a review of current clinical evidence. Clin Auton Res 34, 31–44 (2024). https://doi.org/10.1007/s10286-024-01016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-024-01016-5

Keywords

Navigation