Skip to main content
Log in

Sympathetic vascular transduction and baroreflex sensitivity in the context of severe COPD

  • Letter to the Editor
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

Data collected as part of this work will be made available upon reasonable request to the corresponding author.

References

  1. Bollmeier H (2020) Management of chronic obstructive pulmonary disease: a review focusing on exacerbations. Am J Health Syst Pharm 77:259–268. https://doi.org/10.1093/ajhp/zxz306

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vogelmeier CF, Román-Rodríguez M, Singh D, Han MK, Rodríguez-Roisin R, Ferguson GT (2020) Goals of COPD treatment: focus on symptoms and exacerbations. Respir Med 166:105938. https://doi.org/10.1016/j.rmed.2020.105938

    Article  PubMed  Google Scholar 

  3. Macefield VG, Wallin BG (2018) Physiological and pathophysiological firing properties of single postganglionic sympathetic neurons in humans. J Neurophysiol 119:944–956. https://doi.org/10.1152/jn.00004.2017

    Article  PubMed  Google Scholar 

  4. Macefield VG (2013) Sympathetic microneurography. Autonomic nervous system. Elsevier, Amsterdam New York, pp 353–364

  5. Andreas S, Haarmann H, Klarner S, Hasenfuß G, Raupach T (2013) Increased sympathetic nerve activity in COPD is associated with morbidity and mortality. Lung 192:235–241. https://doi.org/10.1007/s00408-013-9544-7

    Article  CAS  PubMed  Google Scholar 

  6. Young BE, Greaney JL, Keller DM, Fadel PJ (2021) Sympathetic transduction in humans: recent advances and methodological considerations. Am J Physiol-Heart Circ Physiol 320:H942–H953. https://doi.org/10.1152/ajpheart.00926.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stuckless TJR, Vermeulen TD, Brown CV et al (2020) Acute intermittent hypercapnic hypoxia and sympathetic neurovascular transduction in men. J Physiol 598:473–487. https://doi.org/10.1113/jp278941

    Article  CAS  PubMed  Google Scholar 

  8. Ashley C, Burton D, Sverrisdottir YB et al (2010) Firing probability and mean firing rates of human muscle vasoconstrictor neurones are elevated during chronic asphyxia. J Physiol 588:701–712. https://doi.org/10.1113/jphysiol.2009.185348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sesa-Ashton G, Wong R, McCarthy B et al (2022) Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans. Cerebral Cortex Commun. https://doi.org/10.1093/texcom/tgac017

    Article  Google Scholar 

  10. Jouett NP, Watenpaugh DE, Dunlap ME, Smith ML (2015) Interactive effects of hypoxia, hypercapnia and lung volume on sympathetic nerve activity in humans. Exp Physiol 100:1018–1029. https://doi.org/10.1113/ep085092

    Article  CAS  PubMed  Google Scholar 

  11. Kobetic MD, Burchell AE, Ratcliffe LEK, Neumann S, Adams ZH, Nolan R, Nightingale AK, Paton JFR, Hart EC (2021) Sympathetic-transduction in untreated hypertension. J Hum Hypertens 36:24–31. https://doi.org/10.1038/s41371-021-00578-5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Phillips DB, Steinback CD, Collins SÉ, Fuhr DP, Bryan TL, Wong EYL, Tedjasaputra V, Bhutani M, Stickland MK (2018) The carotid chemoreceptor contributes to the elevated arterial stiffness and vasoconstrictor outflow in chronic obstructive pulmonary disease. J Physiol 596:3233–3244. https://doi.org/10.1113/jp275762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conti V, Russomanno G, Corbi G, Izzo V, Vecchione C, Filippelli A (2013) Adrenoreceptors and nitric oxide in the cardiovascular system. Front Physiol 4:321. https://doi.org/10.3389/fphys.2013.00321

  14. Mazzoccoli G, de Matthaeis A, Greco A et al (2014) Effects of hypercapnia on peripheral vascular reactivity in elderly patients with acute exacerbation of chronic obstructive pulmonary disease. Clin Interv Aging. https://doi.org/10.2147/cia.s57548

    Article  PubMed  PubMed Central  Google Scholar 

  15. Minamiyama M, Yamamoto A (2010) Direct evidence of the vasodilator action of carbon dioxide on subcutaneous microvasculature in rats by use of intra-vital video-microscopy. J Biorheol 24:42–46. https://doi.org/10.1007/s12573-010-0023-y

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (GTN1007557) from the National Health & Medical Research Council of Australia to VGM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaughan G. Macefield.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sesa-Ashton, G., Macefield, V.G. Sympathetic vascular transduction and baroreflex sensitivity in the context of severe COPD. Clin Auton Res 34, 219–222 (2024). https://doi.org/10.1007/s10286-023-01003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-023-01003-2

Keywords

Navigation