Skip to main content
Log in

rs1801253 Gly/Gly carriage in the ADRB1 gene leads to unbalanced cardiac sympathetic modulation as assessed by spectral analysis of heart rate variability

  • Letter to the Editor
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Shaffer F, Ginsberg JP (2017) An overview of heart rate variability metrics and norms. Front Public Health 5:258. https://doi.org/10.3389/fpubh.2017.00258

    Article  PubMed  PubMed Central  Google Scholar 

  2. McCraty R, Shaffer F (2015) Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 4(1):46–61. https://doi.org/10.7453/gahmj.2014.073

    Article  PubMed  PubMed Central  Google Scholar 

  3. Forte G, Favieri F, Casagrande M (2019) Heart rate variability and cognitive function: a systematic review. Front Neurosci 13:710. https://doi.org/10.3389/fnins.2019.00710

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goit RK, Ansari AH (2016) Reduced parasympathetic tone in newly diagnosed essential hypertension. Indian Heart J 68(2):153–157. https://doi.org/10.1016/j.ihj.2015.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  5. Furlan R, Porta A, Costa F et al (2000) Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation 101(8):886–892. https://doi.org/10.1161/01.CIR.101.8.886

    Article  CAS  PubMed  Google Scholar 

  6. Brodde OE (2008) β-1 and β-2 adrenoceptor polymorphisms: functional importance, impact on cardiovascular diseases and drug responses. Pharmacol Ther 117(1):1–29. https://doi.org/10.1016/j.pharmthera.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Yuan H, Sun L et al (2019) β2-Adrenergic receptor gene polymorphisms are associated with cardiovascular events but not all-cause mortality in coronary artery disease patients: a meta-analysis of prospective studies. Genet Test Mol Biomarkers 23(2):124–137. https://doi.org/10.1089/gtmb.2018.0153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahles A, Rochais F, Frambach T et al (2011) A polymorphism-specific “memory” mechanism in the β2-adrenergic receptor. Sci Signal. https://doi.org/10.1126/scisignal.2001681

    Article  PubMed  Google Scholar 

  9. Ahles A, Engelhardt S (2014) Polymorphic variants of adrenoceptors: pharmacology, physiology, and role in disease. Pharmacol Rev 66(3):598–637. https://doi.org/10.1124/pr.113.008219

    Article  CAS  PubMed  Google Scholar 

  10. Vriz O, Minisini R, Citro R et al (2011) Analysis of β1 and β2-adrenergic receptors polymorphism in patients with apical ballooning cardiomyopathy. Acta Cardiol 66(6):787–790. https://doi.org/10.2143/AC.66.6.2136964

    Article  PubMed  Google Scholar 

  11. Grossini E, Stecco A, Gramaglia C et al (2022) Misophonia: analysis of the neuroanatomic patterns at the basis of psychiatric symptoms and changes of the orthosympathetic/parasympathetic balance. Front Neurosci 16(827998):11. https://doi.org/10.3389/fnins.2022.827998

    Article  Google Scholar 

  12. Wittwer ED, Liu Z, Warner ND et al (2011) Beta-1 and beta-2 adrenergic receptor polymorphism and association with cardiovascular response to orthostatic screening. Auton Neurosci 164(1–2):89–95. https://doi.org/10.1016/j.autneu.2011.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matuskova L, Czippelova B, Turianikova Z et al (2021) Beta-adrenergic receptors gene polymorphisms are associated with cardiac contractility and blood pressure variability. Physiol Res 70(S3):S327–S337. https://doi.org/10.33549/physiolres.934837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnson JA, Zineh I, Puckett BJ et al (2003) β1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther 74(1):44–52. https://doi.org/10.1016/S0009-9236(03)00068-7

    Article  CAS  PubMed  Google Scholar 

  15. Habas E, Akbar RA, Alfitori G, Farfar KL, Habas E, Errayes N, Habas A, Adab AA, Rayani A, Geryo R, Elzouki ANY (2023) Effects of nondipping blood pressure changes: a nephrologist prospect. Cureus 15(7):e42681. https://doi.org/10.7759/cureus.42681

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was (partially) funded by the Università del Piemonte Orientale, FAR-2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Grossini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest relevant to this paper.

Ethical approval

All participants gave written informed consent to their participation in the study and their data were handled in pseudonymized conditions. The study protocol was approved by the local Ethical Committee (http://www.comitatoeticonovara.it/comitatoetico.html, document number 157/18) and has been conducted in strict accordance with the principles of the Declaration of Helsinki.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grossini, E., De Zanet, D., Apostolo, D. et al. rs1801253 Gly/Gly carriage in the ADRB1 gene leads to unbalanced cardiac sympathetic modulation as assessed by spectral analysis of heart rate variability. Clin Auton Res 34, 205–208 (2024). https://doi.org/10.1007/s10286-023-01001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-023-01001-4

Keywords

Navigation