Skip to main content

Forearm vascular resistance responses to the Valsalva maneuver in healthy young and older adults

Abstract

Purpose

Effective end-organ peripheral vascular resistance responses are critical to blood pressure control while upright, and prevention of syncope (fainting). The Valsalva maneuver (VM) induces blood pressure decreases that evoke baroreflex-mediated vasoconstriction. We characterized beat-to-beat forearm vascular resistance (FVR) responses to the VM in healthy adults, evaluated the impact of age and sex on these responses, and investigated their association with orthostatic tolerance (OT; susceptibility to syncope). We hypothesized that individuals with smaller FVR responses would be more susceptible to syncope.

Methods

Healthy young (N = 36; 19 women; age 25.4 ± 4.6 years) and older (N = 21; 12 women; age 62.4 ± 9.6 years) adults performed a supine 40 mmHg, 20 s VM. Graded 60° head-up-tilt with combined lower body negative pressure continued to presyncope was used to determine OT. Non-invasive beat-to-beat blood pressure and heart rate (finger plethysmography) were recorded continuously. FVR was calculated as mean arterial pressure (MAP) divided by brachial blood flow velocity (Doppler ultrasound) relative to baseline.

Results

The VM produces a distinctive FVR pattern that peaks (+137.1 ± 11.6%) in phase 2B (17.5 ± 0.3 s) as the baroreflex responds to low-pressure perturbations. This response increased with age overall (p < 0.001) and within male (p = 0.030) and female subgroups (p < 0.001). Maximum FVR during the VM was significantly correlated with maximal tilt FVR (r = 0.364; p = 0.0153) and with OT when expressed relative to the MAP decrease in phase 2A (Max FVR (%)/MAP2A-1; r = 0.337; p = 0.0206).

Conclusion

This is the first characterization of FVR responses to the VM. The VM elicits large baroreflex-mediated increases in FVR; small FVR responses to the VM may indicate susceptibility to syncope.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Due to legal and ethical restriction, data cannot be made publicly available. Data will be made available upon request. Additional published or public analyses would only be permitted with ethics approval for secondary data access. Requests for access to datasets should be made to the corresponding author.

References

  1. Jones PK, Gibbons CH (2014) The role of autonomic testing in syncope. Auton Neurosci Basic Clin 184:40–45. https://doi.org/10.1016/j.autneu.2014.05.011

    Article  Google Scholar 

  2. Hamilton WF, Woodbury RA, Harper HT (1936) Physiologic relationships between intrathoracic, intraspinal and arterial pressures. J Am Med Assoc 107:853–856. https://doi.org/10.1001/jama.1936.02770370017005

    Article  Google Scholar 

  3. Weimer LH (2010) Autonomic testing: common techniques and clinical applications. Neurologist 16:215–222. https://doi.org/10.1097/NRL.0b013e3181cf86ab

    Article  PubMed  Google Scholar 

  4. Goldstein DS, Cheshire WP (2017) Beat-to-beat blood pressure and heart rate responses to the Valsalva maneuver. Clin Auton Res 27:361–367. https://doi.org/10.1007/s10286-017-0474-y

    Article  PubMed  Google Scholar 

  5. Sharpey-Schafer EP (1953) Effects of coughing on intra-thoracic pressure, arterial pressure and peripheral blood flow. J Physiol 122:351–357. https://doi.org/10.1113/jphysiol.1953.sp005004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Roddie IC, Shepherd JT, Whelan RF (1958) Reflex changes in human skeletal muscle blood flow associated with intrathoracic pressure changes. Circ Res 6:232–238. https://doi.org/10.1161/01.RES.6.3.232

    CAS  Article  PubMed  Google Scholar 

  7. Kontos HA, Richardson DW, Norvell JE (1976) Mechanisms of circulatory dysfunction in orthostatic hypotension. Trans Am Clin Climatol Assoc 87:26–35

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Essandoh LK, Duprez DA, Shepherd JT (1987) Postural cardiovascular reflexes: comparison of responses of forearm and calf resistance vessels. J Appl Physiol 63:1801–1805. https://doi.org/10.1152/jappl.1987.63.5.1801

    CAS  Article  PubMed  Google Scholar 

  9. Essandoh LK, Houston DS, Vanhoutte PM, Shepherd JT (1986) Differential effects of lower body negative pressure on forearm and calf blood flow. J Appl Physiol 61:994–998. https://doi.org/10.1152/jappl.1986.61.3.994

    CAS  Article  PubMed  Google Scholar 

  10. Bennett T, Hosking DJ, Hampton JR (1979) Vasomotor responses to the Valsalva manoeuvre in normal subjects and in patients with diabetes mellitus. Br Heart J 42:422–428. https://doi.org/10.1136/hrt.42.4.422

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Thomaseth K, Coletto M, Di Lanzo P, et al (1995) Mathematical modelling of forearm circulation dynamics during Valsalva manoeuver based on non-invasive blood flow/pressure measurements. Computers in Cardiology. IEEE, 677–680

  12. Wieling W, Groothius JT (2012) Physiology of upright posture. In: Robertson D, Biaggioni I, Low PA, Paton JFR (eds) Primer on the autonomic nervous system, 3rd edn. Elsevier, London, UK, pp 193–195

    Chapter  Google Scholar 

  13. Brown CM, Hainsworth R (2000) Forearm vascular responses during orthostatic stress in control subjects and patients with posturally related syncope. Clin Auton Res 10:57–61. https://doi.org/10.1007/BF02279892

    CAS  Article  PubMed  Google Scholar 

  14. Sneddon JF, Counihan PJ, Bashir Y et al (1993) Impaired immediate vasoconstrictor responses in patients with recurrent neurally mediated syncope. Am J Cardiol 71:72–76. https://doi.org/10.1016/0002-9149(93)90713-M

    CAS  Article  PubMed  Google Scholar 

  15. Bush VE, Wight VL, Brown CM, Hainsworth R (2000) Vascular responses to orthostatic stress in patients with postural tachycardia syndrome (POTS), in patients with low orthostatic tolerance, and in asymptomatic controls. Clin Auton Res 10:279–284. https://doi.org/10.1007/BF02281110

    CAS  Article  PubMed  Google Scholar 

  16. Coupal KE, Heeney ND, Hockin BCD et al (2019) Pubertal hormonal changes and the autonomic nervous system: potential role in pediatric orthostatic intolerance. Front Neurosci 13:1197

    Article  Google Scholar 

  17. Lacolley P, Regnault V, Segers P, Laurent S (2017) Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol Rev 97:1555–1617. https://doi.org/10.1152/physrev.00003.2017

    CAS  Article  PubMed  Google Scholar 

  18. Hart ECJ, Charkoudian N (2014) Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiology 29:8–15. https://doi.org/10.1152/physiol.00031.2013

    CAS  Article  PubMed  Google Scholar 

  19. Briant LJB, Charkoudian N, Hart EC (2016) Sympathetic regulation of blood pressure in normotension and hypertension: when sex matters. Exp Physiol 101:219–229. https://doi.org/10.1113/EP085368

    CAS  Article  PubMed  Google Scholar 

  20. Hissen SL, Taylor CE (2020) Sex differences in vascular transduction of sympathetic nerve activity. Clin Auton Res 1:3

    Google Scholar 

  21. Protheroe CL, Ravensbergen HRJC, Inskip JA, Claydon VE (2013) Tilt testing with combined lower body negative pressure: a “gold standard” for measuring orthostatic tolerance. J Vis Exp. https://doi.org/10.3791/4315

    Article  PubMed  PubMed Central  Google Scholar 

  22. Molhoek GP, Wesseling KH, Settels JJM et al (1984) Evaluation of the Penàz servo-plethysmo-manometer for the continuous, non-invasive measurement of finger blood pressure. Basic Res Cardiol 79:598–609. https://doi.org/10.1007/BF01910489

    CAS  Article  PubMed  Google Scholar 

  23. Guelen I, Westerhof BE, Van Der Sar GL et al (2003) Finometer, finger pressure measurements with the possibility to reconstruct brachial pressure. Blood Press Monit 8:27–30

    Article  Google Scholar 

  24. Claydon VE, Moore JP, Greene ER et al (2019) Evaluation of forearm vascular resistance during orthostatic stress: velocity is proportional to flow and size doesn’t matter. PLoS ONE 14:e0224872. https://doi.org/10.1371/journal.pone.0224872

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Sandroni P, Benarroch EE, Low PA (1991) Pharmacological dissection of components of the Valsalva maneuver in adrenergic failure. J Appl Physiol 71:1563–1567. https://doi.org/10.1152/jappl.1991.71.4.1563

    CAS  Article  PubMed  Google Scholar 

  26. Vogel ER, Sandroni P, Low PA (2005) Blood pressure recovery from Valsalva maneuver in patients with autonomic failure. Neurology 65:1533–1537. https://doi.org/10.1212/01.wnl.0000184504.13173.ef

    Article  PubMed  Google Scholar 

  27. Yanes LL, Reckelhoff JF (2011) Postmenopausal hypertension. Am J Hypertens 24:740–749. https://doi.org/10.1038/ajh.2011.71

    Article  PubMed  Google Scholar 

  28. Jones PP, Shapiro LF, Keisling GA et al (2001) Altered autonomic support of arterial blood pressure with age in healthy men. Circulation 104:2424–2429. https://doi.org/10.1161/hc4501.099308

    CAS  Article  PubMed  Google Scholar 

  29. Christou DD, Jones PP, Jordan J et al (2005) Women have lower tonic autonomic support of arterial blood pressure and less effective baroreflex buffering than men. Circulation 111:494–498. https://doi.org/10.1161/01.CIR.0000153864.24034.A6

    Article  PubMed  Google Scholar 

  30. Dinenno FA, Dietz NM, Joyner MJ (2002) Aging and forearm postjunctional α-adrenergic vasoconstriction in healthy men. Circulation 106:1349–1354. https://doi.org/10.1161/01.CIR.0000028819.64790.BE

    CAS  Article  PubMed  Google Scholar 

  31. Davy KP, Seals DR, Tanaka H (1998) Augmented cardiopulmonary and integrative sympathetic baroreflexes but attenuated peripheral vasoconstriction with age. Hypertension 32:298–304. https://doi.org/10.1161/01.HYP.32.2.298

    CAS  Article  PubMed  Google Scholar 

  32. Hogikyan RV, Supiano MA (1994) Arterial α-adrenergic responsiveness is decreased and SNS activity is increased in older humans. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.1994.266.5.e717

    Article  Google Scholar 

  33. Denq JC, O’Brien PC, Low PA (1998) Normative data on phases of the Valsalva maneuver. J Clin Neurophysiol 15:535–540

    CAS  Article  Google Scholar 

  34. Low PA, Denq J-C, Opfer-Gehrking TL et al (1997) Effect of age and gender on sudomotor and cardiovagal function and blood pressure response to tilt in normal subjects. Muscle Nerve 20:1561–1568. https://doi.org/10.1002/(SICI)1097-4598(199712)20:12%3c1561::AID-MUS11%3e3.0.CO;2-3

    CAS  Article  PubMed  Google Scholar 

  35. Baker J, Kimpinski K (2019) An updated normative data set from the autonomic reflex screen representative of Southwestern Ontario. Can J Physiol Pharmacol 97:107–111. https://doi.org/10.1139/cjpp-2018-0611

    CAS  Article  PubMed  Google Scholar 

  36. Smith SA, Salih MM, Littler WA (1987) Assessment of beat to beat changes in cardiac output during the Valsalva manoeuvre using electrical bioimpedance cardiography. Clin Sci 72:423–428. https://doi.org/10.1042/cs0720423

    CAS  Article  Google Scholar 

  37. Ganzeboom KS, Colman N, Reitsma JB et al (2003) Prevalence and triggers of syncope in medical students. Am J Cardiol 91:1006–1008. https://doi.org/10.1016/S0002-9149(03)00127-9

    Article  PubMed  Google Scholar 

  38. Ganzeboom KS, Mairuhu G, Reitsma JB et al (2006) Lifetime cumulative incidence of syncope in the general population: a study of 549 Dutch subjects aged 35?60 years. J Cardiovasc Electrophysiol 17:1172–1176. https://doi.org/10.1111/j.1540-8167.2006.00595.x

    Article  PubMed  Google Scholar 

  39. Meendering JR, Torgrimson BN, Houghton BL et al (2005) Menstrual cycle and sex affect hemodynamic responses to combined orthostatic and heat stress. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.00029.2005

    Article  PubMed  Google Scholar 

  40. Kenny RA, Fillit HM, Rockwood K, Woodhouse K (2010) Syncope. In: Fillit HM, Rockwood K, Woodhouse K (eds) Brocklehurst’s textbook of geriatric medicine and gerontology, 7th edn. Saunders, Philidelphia, pp 338–347

    Chapter  Google Scholar 

  41. Shaw BH, Stiles LE, Bourne K et al (2019) The face of postural tachycardia syndrome—insights from a large cross-sectional online community-based survey. J Intern Med 286:438–448. https://doi.org/10.1111/joim.12895

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Wieling W, Ganzeboom KS, Saul JP (2004) Reflex syncope in children and adolescents W Wieling. Heart 90:1094–1100

    Article  Google Scholar 

  43. Boehm KE, Kip KT, Grubb BP, Kosinski DJ (1997) Neurocardiogenic syncope: response to hormonal therapy. Pediatrics 99:623–625. https://doi.org/10.1542/peds.99.4.623

    CAS  Article  PubMed  Google Scholar 

  44. Charkoudian N, Joyner MJ, Johnson CP et al (2005) Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol 568:315–321. https://doi.org/10.1113/jphysiol.2005.090076

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Hart EC, Charkoudian N, Wallin BG et al (2009) Sex differences in sympathetic neural-hemodynamic balance implications for human blood pressure regulation. Hypertension 53:571–576. https://doi.org/10.1161/HYPERTENSIONAHA.108.126391

    CAS  Article  PubMed  Google Scholar 

  46. Hart EC, Charkoudian N, Wallin BG et al (2011) Sex and ageing differences in resting arterial pressure regulation: the role of the β-adrenergic receptors. J Physiol 589:5285–5297. https://doi.org/10.1113/jphysiol.2011.212753

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Yang H, Cooke WH, Reed KS, Carter JR (2012) Sex differences in hemodynamic and sympathetic neural firing patterns during orthostatic challenge in humans. J Appl Physiol 112:1744–1751. https://doi.org/10.1152/japplphysiol.01407.2011

    Article  PubMed  Google Scholar 

  48. Briant LJB, Burchell AE, Ratcliffe LEK et al (2016) Quantifying sympathetic neuro-haemodynamic transduction at rest in humans: insights into sex, ageing and blood pressure control. J Physiol 594:4753–4768. https://doi.org/10.1113/JP272167

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Kneale BJ, Chowienczyk PJ, Brett SE et al (2000) Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. J Am Coll Cardiol 36:1233–1238. https://doi.org/10.1016/S0735-1097(00)00849-4

    CAS  Article  PubMed  Google Scholar 

  50. Miller VM, Duckles SP (2008) Vascular actions of estrogens: functional implications. Pharmacol Rev 60:210–241

    CAS  Article  Google Scholar 

  51. Saleh TM, Connell BJ (2000) 17β-Estradiol modulates baroreflex sensitivity and autonomic tone of female rats. J Auton Nerv Syst 80:148–161. https://doi.org/10.1016/S0165-1838(00)00087-4

    CAS  Article  PubMed  Google Scholar 

  52. Robinson AT, Babcock MC, Watso JC et al (2019) Relation between resting sympathetic outflow and vasoconstrictor responses to sympathetic nerve bursts: sex differences in healthy young adults. Am J Physiol Integr Comp Physiol 316:R463–R471. https://doi.org/10.1152/ajpregu.00305.2018

    CAS  Article  Google Scholar 

  53. Fu Q, Witkowski S, Okazaki K, Levine BD (2005) Effects of gender and hypovolemia on sympathetic neural responses to orthostatic stress. Am J Physiol Regul Integr Comp Physiol 289:109–116. https://doi.org/10.1152/ajpregu.00013.2005

    CAS  Article  Google Scholar 

  54. Narkiewicz K, Phillips BG, Kato M et al (2005) Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension 45:522–525. https://doi.org/10.1161/01.HYP.0000160318.46725.46

    CAS  Article  PubMed  Google Scholar 

  55. Hart EC, Joyner MJ, Wallin BG et al (2009) Age-related differences in the sympathetic-hemodynamic balance in men. Hypertension 54:127–133. https://doi.org/10.1161/HYPERTENSIONAHA.109.131417

    CAS  Article  PubMed  Google Scholar 

  56. Smith EG, Voyles WF, Kirby BS et al (2007) Ageing and leg postjunctional α-adrenergic vasoconstrictor responsiveness in healthy men. J Physiol 582:63–71. https://doi.org/10.1113/jphysiol.2007.130591

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Vianna LC, Hart EC, Fairfax ST et al (2012) Influence of age and sex on the pressor response following a spontaneous burst of muscle sympathetic nerve activity. Am J Physiol Circ Physiol 302:H2419–H2427. https://doi.org/10.1152/ajpheart.01105.2011

    CAS  Article  Google Scholar 

  58. Cooke WH, Carter JR, Kuusela TA (2003) Muscle sympathetic nerve activation during the Valsalva maneuver: interpretive and analytical caveats. Aviat Space Environ Med 74:731–737

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Farhaan M Khan for his assistance with data processing.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

BH and VC conceived and designed the study. BH and ML collected the data. BH, ET and ML contributed to the data analysis. BH was responsible for data visualization. BH and VC interpreted the data and drafted the manuscript. All authors reviewed the manuscript and approved the final version for submission.

Corresponding author

Correspondence to Victoria E. Claydon.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hockin, B.C.D., Tang, E.Z., Lloyd, M.G. et al. Forearm vascular resistance responses to the Valsalva maneuver in healthy young and older adults. Clin Auton Res 31, 737–753 (2021). https://doi.org/10.1007/s10286-021-00810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-021-00810-9

Keywords

  • Forearm vascular resistance
  • Valsalva maneuver
  • Syncope
  • Age and sex
  • Orthostatic tolerance