Skip to main content

Advertisement

Log in

Effect of exercise training on cardiovascular autonomic and muscular function in subclinical Chagas cardiomyopathy: a randomized controlled trial

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Patients with chronic chagasic cardiomyopathy with preserved ventricular function present with autonomic imbalance. This study evaluated the effects of exercise training (ET) in restoring peripheral and cardiac autonomic control and skeletal muscle phenotype in patients with subclinical chronic chagasic cardiomyopathy.

Methods

This controlled trial (NCT02295215) included 24 chronic chagasic cardiomyopathy patients who were randomized www.random.org/lists/ into two groups: those who underwent exercise training (n = 12) and those who continued their usual activities (n = 12). Eight patients completed the exercise training protocol, and 10 patients were clinically followed up for 4 months. Muscular sympathetic nerve activity was measured by microneurography and muscle blood flow (MBF) using venous occlusion plethysmography. The low-frequency component of heart rate variability in normalized units (LFnuHR) reflects sympathetic activity in the heart, and the low-frequency component of systolic blood pressure variability in normalized units reflects sympathetic activity in the vessels. The infusion of vasoactive drugs (phenylephrine and sodium nitroprusside) was used to evaluate cardiac baroreflex sensitivity, and a vastus lateralis muscle biopsy was performed to evaluate atrogin-1 and MuRF-1 gene expression.

Results

The baroreflex sensitivity for increases (p = 0.002) and decreases (p = 0.02) in systolic blood pressure increased in the ET group. Muscle blood flow also increased only in the ET group (p = 0.004). Only the ET group had reduced resting muscular sympathetic nerve activity levels (p = 0.008) and sympathetic activity in the heart (LFnu; p = 0.004) and vessels (p = 0.04) after 4 months. Regarding skeletal muscle, after 4 months, participants in the exercise training group presented with lower atrogin-1 gene expression than participants who continued their activities as usual (p = 0.001). The reduction in muscular sympathetic nerve activity was positively associated with reduced atrogin-1 (r = 0.86; p = 0.02) and MuRF-1 gene expression (r = 0.64; p = 0.06); it was negatively associated with improved baroreflex sensitivity both for increases (r = –0.72; p = 0.020) and decreases (r = –0.82; p = 0.001) in blood pressure.

Conclusions

ET improved cardiac and peripheral autonomic function in patients with subclinical chagasic cardiomyopathy. ET reduced MSNA and sympathetic activity in the heart and vessels and increased cardiac parasympathetic tone and baroreflex sensitivity. Regarding peripheral muscle, after 4 months, patients who underwent exercise training had an increased cross-sectional area of type I fibers and oxidative metabolism of muscle fibers, and decreased atrogin-1 gene expression, compared to participants who continued their activities as usual. In addition, the reduction in MSNA was associated with improved cardiac baroreflex sensitivity, reduced sympathetic cardiovascular tone, and reduced atrogin-1 and MuRF-1 gene expression.

Trial registration

ID: NCT02295215. Registered in June 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCC:

Chronic chagasic cardiomyopathy

MSNA:

Muscle sympathetic nerve activity

ET:

Exercise training

References

  1. Chagas C (1909) (1909) Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz. Scielo 1:159–218

    Google Scholar 

  2. Nunes MCP, Dones W, Morillo CA, Encina JJ, Ribeiro AL (2013) Chagas disease: an overview of clinical and epidemiological aspects. J Am Coll Cardiol 62:767–776

    PubMed  Google Scholar 

  3. Rassi AJ, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet (London, England) 375:1388–1402

    Google Scholar 

  4. Shikanai-Yasuda MA, Carvalho NB (2012) Oral transmission of Chagas disease. Clin Infect Dis 54:845–852

    PubMed  Google Scholar 

  5. Biolo A, Ribeiro AL, Clausell N (2010) Chagas cardiomyopathy-where do we stand after a hundred years? Prog Cardiovasc Dis 52:300–316

  6. Dias E, Laranja FS, Miranda A, Nobrega G (1956) Chagas’ disease; a clinical, epidemiologic, and pathologic study. Circulation 14:1035–1060

    CAS  PubMed  Google Scholar 

  7. Barretto ACP, Santos AC, Munhoz R, Rondon MUPB, Franco FG, Trombetta IC et al (2009) Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 135:302–307

    PubMed  Google Scholar 

  8. Mirizzi G, Giannoni A, Bramanti F, Ripoli A, Varanini M, Bernardi L et al (2013) A simple method for measuring baroreflex sensitivity holds prognostic value in heart failure. Int J Cardiol 161:e9–11

  9. Consolim-Colombo FM, Filho JA, Lopes HF, Sobrinho CR, Otto ME, Riccio GM et al (2000) Decreased cardiopulmonary baroreflex sensitivity in Chagas’ heart disease. Hypertens (Dallas, TX 1979) 36:1035–1039

    CAS  Google Scholar 

  10. Soares Barreto-Filho JA, Consolim-Colombo FM, Ferreira Lopes H, Martins Sobrinho CR, Guerra-Riccio GM, Krieger EM (2001) Dysregulation of peripheral and central chemoreflex responses in Chagas’ heart disease patients without heart failure. Circulation 104:1792–1798

    CAS  PubMed  Google Scholar 

  11. Bacurau AVN, Jardim MA, Ferreira JCB, Bechara LRG, Bueno CR, Alba-Loureiro TC et al (2009) Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: role of exercise training. J Appl Physiol [Internet] 106:1631–1640. https://doi.org/10.1152/japplphysiol.91067.2008(cited 2020 Jun 10)

    Article  Google Scholar 

  12. Duscha BD, Annex BH, Green HJ, Pippen AM, Kraus WE (2002) Deconditioning fails to explain peripheral skeletal muscle alterations in men with chronic heart failure. J Am Coll Cardiol 39:1170–1174

    PubMed  Google Scholar 

  13. Larsen AI, Lindal S, Aukrust P, Toft I, Aarsland T, Dickstein K (2002) Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and exercise capacity. Int J Cardiol. 83:25–32

    PubMed  Google Scholar 

  14. Drexler H, Riede U, Münzel T, König H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759

    CAS  PubMed  Google Scholar 

  15. Lang CC, Rayos GH, Chomsky DB, Wood AJJ, Wilson JR (1997) Effect of sympathoinhibition on exercise performance in patients with heart failure. Circulation 96:238–245. https://doi.org/10.1161/01.CIR.96.1.238(cited 2020 Jun 10)

    Article  CAS  PubMed  Google Scholar 

  16. Deo SH, Jenkins NT, Padilla J, Parrish AR, Fadel PJ (2013) Norepinephrine increases NADPH oxidase-derived superoxide in human peripheral blood mononuclear cells via α-adrenergic receptors. Am J Physiol Integr Comp Physiol [Internet] 305:R1124–R1132. https://doi.org/10.1152/ajpregu.00347.2013(cited 2020 Jun 10)

    Article  CAS  Google Scholar 

  17. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98:14440–14445

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    CAS  PubMed  Google Scholar 

  19. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    CAS  PubMed  Google Scholar 

  20. Sorokin AV, Kim ER, Ovchinnikov LP (2009) Proteasome system of protein degradation and processing. Biochemistry (Mosc). 74:1411–1442

    CAS  PubMed  Google Scholar 

  21. de Oca MM, Torres SH, Loyo JG, Vazquez F, Hernandez N, Anchustegui B et al (2004) Exercise performance and skeletal muscles in patients with advanced Chagas disease. Chest 125:1306–1314

    Google Scholar 

  22. Torres SH, Finol HJ, de Oca MM, Vasquez F, Puigbo JJ, Loyo JG (2004) Capillary damage in skeletal muscle in advanced Chagas’ disease patients. Parasitol Res 93:364–368

    PubMed  Google Scholar 

  23. Negrao CE, Middlekauff HR, Gomes-Santos IL, Antunes-Correa LM (2015) Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure. Am J Physiol Heart Circ Physiol 308:H792–802

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cunha TF, Bacurau AVN, Moreira JBN, Paixão NA, Campos JC, Ferreira JCB et al (2012) Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PLoS One. Public Library of Science; 7:e41701–e41701. Available from: https://pubmed.ncbi.nlm.nih.gov/22870245. Accessed 3 Aug 2017

  25. Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L et al (1997) Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol 29:1067–1073

    CAS  PubMed  Google Scholar 

  26. Tyni-Lenne R, Gordon A, Jansson E, Bermann G, Sylven C (1997) Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopat. Am J Cardiol 80:1025–1029

    CAS  PubMed  Google Scholar 

  27. Roveda F, Middlekauff HR, Rondon MUPB, Reis SF, Souza M, Nastari L et al (2003) The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol 42:854–860

    PubMed  Google Scholar 

  28. Antunes-Correa LM, Kanamura BY, Melo RC, Nobre TS, Ueno LM, Franco FGM et al (2012) Exercise training improves neurovascular control and functional capacity in heart failure patients regardless of age. Eur J Prev Cardiol 19:822–829

    PubMed  Google Scholar 

  29. Groehs RV, Toschi-Dias E, Antunes-Correa LM, Trevizan PF, Rondon MUPB, Oliveira P et al (2015) Exercise training prevents the deterioration in the arterial baroreflex control of sympathetic nerve activity in chronic heart failure patients. Am J Physiol Heart Circ Physiol 308:H1096–H1102

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fagius J, Wallin BG (1993) Long-term variability and reproducibility of resting human muscle nerve sympathetic activity at rest, as reassessed after a decade. Clin Auton Res 3:201–205

    CAS  PubMed  Google Scholar 

  31. Groehs RV, Antunes-Correa LM, Nobre TS, Alves M-JN, Rondon MUP, Barreto ACP et al (2016) Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients. Eur J Prev Cardiol 23:1599–1608

    PubMed  Google Scholar 

  32. Antunes-Correa LM, Ueno-Pardi LM, Trevizan PF, Santos MR, da Silva CHP, Franco FGM et al (2016) The influence of aetiology on the benefits of exercise training in patients with heart failure. Eur J Prev Cardiol 24:365–372. https://doi.org/10.1177/2047487316683530

    Article  Google Scholar 

  33. Heart rate variability: standards of measurement, physiological interpretation and clinical use (1996) Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93:1043–1065

    Google Scholar 

  34. De Sá Perlingeiro P, Azevedo LF, Gomes-Santos IL, Bortolotto LA, Rondon MUPB, Negrão CE et al (2016) Neurovascular control and cardiac structure in amateur runners with hypertension. Med Sci Sport Exerc 48:26–32

  35. Fraga R, Franco FG, Roveda F, de Matos LNJ, Braga AMFW, Rondon MUPB et al (2007) Exercise training reduces sympathetic nerve activity in heart failure patients treated with carvedilol. Eur J Heart Fail 9:630–636

    CAS  PubMed  Google Scholar 

  36. Kluser Sales AR, Negrão MV, Testa L, Ferreira-Santos L, Ramalho Groehs RV, Carvalho B et al (2019) Chemotherapy acutely impairs neurovascular and hemodynamic responses in women with breast cancer. Am J Physiol Hear Circ Physiol Am Physiol Soc 317:H1–H12

    Google Scholar 

  37. Antunes-Correa LM, Nobre TS, Groehs RV, Alves MJNN, Fernandes T, Couto GK et al (2014) Molecular basis for the improvement in muscle metaboreflex and mechanoreflex control in exercise-trained humans with chronic heart failure. Am J Physiol Heart Circ Physiol 307:H1655–H1666

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dos Santos MR, Sayegh ALC, Bacurau AVN, Arap MA, Brum PC, Pereira RMR et al (2016) Effect of exercise training and testosterone replacement on skeletal muscle wasting in patients with heart failure with testosterone deficiency. Mayo Clin Proc 91:575–586

    PubMed  Google Scholar 

  39. Nachlas MM, Tsou KC, de Souza E, Cheng CS, Seligman AM (1957) Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem 5:420–436

    CAS  PubMed  Google Scholar 

  40. Bechara LRG, Moreira JBN, Jannig PR, Voltarelli VA, Dourado PM, Vasconcelos AR et al (2014) NADPH oxidase hyperactivity induces plantaris atrophy in heart failure rats. Int J Cardiol Netherlands 175:499–507

    Google Scholar 

  41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  42. Cohen-Solal A (1996) Cardiopulmonary exercise testing in chronic heart failure. In: Wasserman K (ed) Exercise gas exchange in heart disease. Futura Publications Company, Armonk, New York, pp 17–38

    Google Scholar 

  43. Coats AJ, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L et al (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131

    CAS  PubMed  Google Scholar 

  44. Negrao CE, Middlekauff HR (2008) Adaptations in autonomic function during exercise training in heart failure. Heart Fail Rev 13:51–60

    PubMed  Google Scholar 

  45. Rondon E, Brasileiro-Santos MS, Moreira ED, Rondon MUPB, Mattos KC, Coelho MA et al (2006) Exercise training improves aortic depressor nerve sensitivity in rats with ischemia-induced heart failure. Am J Physiol Circ Physiol [Internet] 291:H2801–H2806. https://doi.org/10.1152/ajpheart.01352.2005

    Article  CAS  Google Scholar 

  46. Monahan KD, Tanaka H, Dinenno FA, Seals DR (2001) Central arterial compliance is associated with age- and habitual exercise–related differences in cardiovagal baroreflex sensitivity. Circulation 104:1627–1632

    CAS  PubMed  Google Scholar 

  47. Villacorta H, Bortolotto LA, Arteaga E, Mady C (2006) Aortic distensibility measured by pulse-wave velocity is not modified in patients with Chagas’ disease. J Negat Results Biomed 5:9. https://doi.org/10.1186/1477-5751-5-9

    Article  PubMed  PubMed Central  Google Scholar 

  48. Averill DB, Diz DI (2000) Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51:119–28. https://www.sciencedirect.com/science/article/pii/S0361923099002373. Accessed 3 Aug 2017

  49. Liu J-L, Irvine S, Reid IA, Patel KP, Zucker IH (2000) Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure. Circulation 102:1854–1862

    CAS  PubMed  Google Scholar 

  50. Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R et al (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98:2709–2715

    CAS  PubMed  Google Scholar 

  51. Lima MMO, Rocha MOC, Nunes MCP, Sousa L, Costa HS, Alencar MCN et al (2010) A randomized trial of the effects of exercise training in Chagas cardiomyopathy. Eur J Heart Fail [Internet] 12:866–873. https://doi.org/10.1093/eurjhf/hfq123

    Article  CAS  Google Scholar 

  52. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol [Internet] 102:2389–2397. https://doi.org/10.1152/japplphysiol.01202.2006

    Article  CAS  Google Scholar 

  53. Carvalho RF, Castan EP, Coelho CA, Lopes FS, Almeida FLA, Michelin A et al (2010) Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy. J Mol Histol [Internet] 41:81–87. https://doi.org/10.1007/s10735-010-9262-x

    Article  CAS  Google Scholar 

  54. Gielen S, Sandri M, Kozarez I, Kratzsch J, Teupser D, Thiery J et al (2012) Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age. Circulation 125:2716–2727

    CAS  PubMed  Google Scholar 

  55. Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Physiol [Internet] 287:C834–C843. https://doi.org/10.1152/ajpcell.00579.2003

    Article  CAS  Google Scholar 

  56. Okoshi MP, Romeiro FG, Paiva SAR, Okoshi K (2013) Heart failure-induced cachexia. Arq Bras Cardiol Sci 100:476–482

    Google Scholar 

  57. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM et al (1997) Wasting as independent risk factor for mortality in chronic heart failure. Lancet (London, England). 349:1050–1053

    CAS  Google Scholar 

  58. Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35:411–429

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP-#2010/50048–1 and #2011/17533-6) and, in part, by Fundação Zerbini. AOS was supported by Conselho Nacional de Pesquisa and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CNPq, #142179/2013-2 and CAPES, 88881.135917/2016-01). LMAC was supported by FAPESP (#2013/15651-7). DMLL was supported by Conselho Nacional de Pesquisa (CNPq #140265/2013-9). CEN and MUPBR were supported by CNPq (#301867/2010-0 and #308068/2011-4, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Oliveira Sarmento.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest concerning the research, authorship, or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmento, A.O., Antunes-Correa, L.M., Alves, M.J.N.N. et al. Effect of exercise training on cardiovascular autonomic and muscular function in subclinical Chagas cardiomyopathy: a randomized controlled trial. Clin Auton Res 31, 239–251 (2021). https://doi.org/10.1007/s10286-020-00721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-020-00721-1

Keywords

Navigation