Skip to main content

Advertisement

Log in

Dissociation between reduced pain and arterial blood pressure following epidural spinal cord stimulation in patients with chronic pain: A retrospective study

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Acute pain and resting arterial blood pressure (BP) are positively correlated in patients with chronic pain. However, it remains unclear whether treatment for chronic pain reduces BP. Therefore, in a retrospective study design, we tested the hypothesis that implantation of an epidural spinal cord stimulator (SCS) device to treat chronic pain would significantly reduce clinic pain ratings and BP and that these reductions would be significantly correlated.

Methods

Pain ratings and BP in medical records were collected before and after surgical implantation of a SCS device at the University of Iowa Hospitals and Clinics between 2008 and 2018 (n = 213).

Results

Reductions in pain rating [6.3 ± 2.0 vs. 5.0 ± 1.9 (scale: 0–10), P < 0.001] and BP [mean arterial pressure (MAP) 95 ± 10 vs. 89 ± 10 mmHg, P < 0.001] were statistically significant within 30 days of SCS. Interestingly, BP returned toward baseline within 60 days following SCS implantation. Multiple linear regression analysis showed that sex (P = 0.007), baseline MAP (P < 0.001), and taking hypertension (HTN) medications (P < 0.001) were significant determinants of change in MAP from baseline (Δ MAP) (model R2 = 0.33). After statistical adjustments, Δ MAP was significantly greater among women than among men ( − 7.2 ± 8.5 vs.  − 3.9 ± 8.5 mmHg, P = 0.007) and among patients taking HTN medications than among those not taking hypertension medications ( − 10.1 ± 8.7 vs.  − 3.9 ± 8.5 mmHg, P < 0.001), despite no group differences in change in pain ratings.

Conclusions

Together, these findings suggest that SCS for chronic pain independently produces clinically meaningful, albeit transient, reductions in BP and may provide a rationale for studies aimed at reducing HTN medication burden among this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bruehl S, Chung OY, Jirjis JN, Biridepalli S (2005) Prevalence of clinical hypertension in patients with chronic pain compared to nonpain general medical patients. Clin J Pain 21(2):147–153

    Article  Google Scholar 

  2. Olsen RB, Bruehl S, Nielsen CS, Rosseland LA, Eggen AE, Stubhaug A (2013) Hypertension prevalence and diminished blood pressure-related hypoalgesia in individuals reporting chronic pain in a general population: the Tromsø study. Pain 154(2):257–262. https://doi.org/10.1016/j.pain.2012.10.020

    Article  PubMed  Google Scholar 

  3. Von Korff M, Crane P, Lane M, Miglioretti DL, Simon G, Saunders K, Stang P, Brandenburg N, Kessler R (2005) Chronic spinal pain and physical-mental comorbidity in the United States: results from the national comorbidity survey replication. Pain 113(3):331–339. https://doi.org/10.1016/j.pain.2004.11.010

    Article  Google Scholar 

  4. Vasan RS, Larson MG, Leip EP, Evans JC, O'Donnell CJ, Kannel WB, Levy D (2001) Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 345(18):1291–1297. https://doi.org/10.1056/NEJMoa003417

    Article  CAS  PubMed  Google Scholar 

  5. Sheps DS, Bragdon EE, Gray TF 3rd, Ballenger M, Usedom JE, Maixner W (1992) Relation between systemic hypertension and pain perception. Am J Cardiol 70(16):3F–5F. https://doi.org/10.1016/0002-9149(92)90181-w

    Article  CAS  PubMed  Google Scholar 

  6. Ring C, France CR, al’Absi M, Edwards L, McIntyre D, Carroll D, Martin U (2008) Effects of naltrexone on electrocutaneous pain in patients with hypertension compared to normotensive individuals. Biol Psychol 77(2):191–196. https://doi.org/10.1016/j.biopsycho.2007.10.006

    Article  PubMed  Google Scholar 

  7. Bruehl S, Chung OY, Ward P, Johnson B, McCubbin JA (2002) The relationship between resting blood pressure and acute pain sensitivity in healthy normotensives and chronic back pain sufferers: the effects of opioid blockade. Pain 100(1–2):191–201. https://doi.org/10.1016/s0304-3959(02)00295-6

    Article  CAS  PubMed  Google Scholar 

  8. Elbert T, Rockstroh B, Lutzenberger W, Kessler M, Pietrowsky R (1988) Baroreceptor stimulation alters pain sensation depending on tonic blood pressure. Psychophysiology 25(1):25–29. https://doi.org/10.1111/j.1469-8986.1988.tb00953.x

    Article  CAS  PubMed  Google Scholar 

  9. Sacco M, Meschi M, Regolisti G, Detrenis S, Bianchi L, Bertorelli M, Pioli S, Magnano A, Spagnoli F, Giuri PG, Fiaccadori E, Caiazza A (2013) The relationship between blood pressure and pain. J Clin Hypertens (Greenwich) 15(8):600–605. https://doi.org/10.1111/jch.12145

    Article  Google Scholar 

  10. Bruehl S, Chung OY (2004) Interactions between the cardiovascular and pain regulatory systems: an updated review of mechanisms and possible alterations in chronic pain. Neurosci Biobehav Rev 28(4):395–414. https://doi.org/10.1016/j.neubiorev.2004.06.004

    Article  PubMed  Google Scholar 

  11. Suarez-Roca H, Klinger RY, Podgoreanu MV, Ji RR, Sigurdsson MI, Waldron N, Mathew JP, Maixner W (2019) Contribution of baroreceptor function to pain perception and perioperative outcomes. Anesthesiology 130(4):634–650. https://doi.org/10.1097/ALN.0000000000002510

    Article  PubMed  PubMed Central  Google Scholar 

  12. Randich A, Robertson JD (1994) Spinal nociceptive transmission in the spontaneously hypertensive and Wistar-Kyoto normotensive rat. Pain 58(2):169–183. https://doi.org/10.1016/0304-3959(94)90197-x

    Article  PubMed  Google Scholar 

  13. Maixner W, Touw KB, Brody MJ, Gebhart GF, Long JP (1982) Factors influencing the altered pain perception in the spontaneously hypertensive rat. Brain Res 237(1):137–145. https://doi.org/10.1016/0006-8993(82)90562-5

    Article  CAS  PubMed  Google Scholar 

  14. Zamir N, Segal M (1979) Hypertension-induced analgesia: changes in pain sensitivity in experimental hypertensive rats. Brain Res 160(1):170–173. https://doi.org/10.1016/0006-8993(79)90614-0

    Article  CAS  PubMed  Google Scholar 

  15. Zamir N, Simantov R, Segal M (1980) Pain sensitivity and opioid activity in genetically and experimentally hypertensive rats. Brain Res 184(2):299–310. https://doi.org/10.1016/0006-8993(80)90800-8

    Article  CAS  PubMed  Google Scholar 

  16. Ghione S, Rosa C, Mezzasalma L, Panattoni E (1988) Arterial hypertension is associated with hypalgesia in humans. Hypertension 12(5):491–497. https://doi.org/10.1161/01.hyp.12.5.491

    Article  CAS  PubMed  Google Scholar 

  17. Pilowsky PM, Goodchild AK (2002) Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens 20(9):1675–1688. https://doi.org/10.1097/00004872-200209000-00002

    Article  CAS  PubMed  Google Scholar 

  18. Zamir N, Segal M, Simantov R (1981) Opiate receptor binding in the brain of the hypertensive rat. Brain Res 213(1):217–222. https://doi.org/10.1016/0006-8993(81)91265-8

    Article  CAS  PubMed  Google Scholar 

  19. Weinstock M, Schorer-Apelbaum D, Rosin AJ (1984) Endogenous opiates mediate cardiac sympathetic inhibition in response to a pressor stimulus in rabbits. J Hypertens 2(6):639–646. https://doi.org/10.1097/00004872-198412000-00009

    Article  CAS  PubMed  Google Scholar 

  20. Pertovaara A, Kontinen VK, Kalso EA (1997) Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat. Exp Neurol 147(2):428–436. https://doi.org/10.1006/exnr.1997.6555

    Article  CAS  PubMed  Google Scholar 

  21. Benarroch EE (2012) Periaqueductal gray: an interface for behavioral control. Neurology 78(3):210–217. https://doi.org/10.1212/WNL.0b013e31823fcdee

    Article  PubMed  Google Scholar 

  22. Helmstetter FJ, Tershner SA (1994) Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses. J Neurosci 14(11 Pt 2):7099–7108

    Article  CAS  Google Scholar 

  23. Epstein LJ, Palmieri M (2012) Managing chronic pain with spinal cord stimulation. Mt Sinai J Med 79(1):123–132. https://doi.org/10.1002/msj.21289

    Article  PubMed  Google Scholar 

  24. Manchikanti L, Abdi S, Atluri S, Benyamin RM, Boswell MV, Buenaventura RM, Bryce DA, Burks PA, Caraway DL, Calodney AK, Cash KA, Christo PJ, Cohen SP, Colson J, Conn A, Cordner H, Coubarous S, Datta S, Deer TR, Diwan S, Falco FJ, Fellows B, Geffert S, Grider JS, Gupta S, Hameed H, Hameed M, Hansen H, Helm S 2nd, Janata JW, Justiz R, Kaye AD, Lee M, Manchikanti KN, McManus CD, Onyewu O, Parr AT, Patel VB, Racz GB, Sehgal N, Sharma ML, Simopoulos TT, Singh V, Smith HS, Snook LT, Swicegood JR, Vallejo R, Ward SP, Wargo BW, Zhu J, Hirsch JA (2013) An update of comprehensive evidence-based guidelines for interventional techniques in chronic spinal pain. Part II: guidance and recommendations. Pain Physician 16[2 Suppl]:49–283

    Google Scholar 

  25. Stapff M (2017) Use of electronic health data in clinical development. Pharm Ind 79(2):204–210

    Google Scholar 

  26. Stapff M, Hilderbrand S (2019) First-line treatment of essential hypertension: A real-world analysis across four antihypertensive treatment classes. J Clin Hypertens (Greenwich) 21(5):627–634. https://doi.org/10.1111/jch.13531

    Article  CAS  Google Scholar 

  27. Hawker GA, Mian S, Kendzerska T, French M (2011) Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken) 63[Suppl 11]:S240–252. https://doi.org/10.1002/acr.20543

    Article  Google Scholar 

  28. Bijur PE, Silver W, Gallagher EJ (2001) Reliability of the visual analog scale for measurement of acute pain. Acad Emerg Med 8(12):1153–1157. https://doi.org/10.1111/j.1553-2712.2001.tb01132.x

    Article  CAS  PubMed  Google Scholar 

  29. Gallagher EJ, Bijur PE, Latimer C, Silver W (2002) Reliability and validity of a visual analog scale for acute abdominal pain in the ED. Am J Emerg Med 20(4):287–290. https://doi.org/10.1053/ajem.2002.33778

    Article  PubMed  Google Scholar 

  30. Joyce CR, Zutshi DW, Hrubes V, Mason RM (1975) Comparison of fixed interval and visual analogue scales for rating chronic pain. Eur J Clin Pharmacol 8(6):415–420. https://doi.org/10.1007/bf00562315

    Article  CAS  Google Scholar 

  31. Jensen MP, Karoly P, Braver S (1986) The measurement of clinical pain intensity: a comparison of six methods. Pain 27(1):117–126. https://doi.org/10.1016/0304-3959(86)90228-9

    Article  PubMed  Google Scholar 

  32. Holland MT, Rettenmaier LA, Flouty OE, Thomsen TR, Jerath NU, Reddy CG (2016) Epidural spinal cord stimulation: a novel therapy in the treatment of restless legs syndrome. World Neurosurg 92(582):e515–588. https://doi.org/10.1016/j.wneu.2016.05.077

    Article  Google Scholar 

  33. Holwerda SW, Holland MT, Reddy CG, Pierce GL (2018) Femoral vascular conductance and peroneal muscle sympathetic nerve activity responses to acute epidural spinal cord stimulation in humans. Exp Physiol 103(6):905–915. https://doi.org/10.1113/EP086945

    Article  PubMed  PubMed Central  Google Scholar 

  34. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA Sr, Williamson JD, Wright JT Jr (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American college of cardiology/american heart association task force on clinical practice guidelines. Hypertension 71(6):1269–1324. https://doi.org/10.1161/HYP.0000000000000066

    Article  CAS  PubMed  Google Scholar 

  35. Deuchars SA (2015) How sympathetic are your spinal cord circuits? Exp Physiol 100(4):365–371. https://doi.org/10.1113/EP085031

    Article  CAS  PubMed  Google Scholar 

  36. Foreman RD, Linderoth B (2012) Neural mechanisms of spinal cord stimulation. Int Rev Neurobiol 107:87–119. https://doi.org/10.1016/B978-0-12-404706-8.00006-1

    Article  PubMed  Google Scholar 

  37. Thoenes M, Neuberger HR, Volpe M, Khan BV, Kirch W, Bohm M (2010) Antihypertensive drug therapy and blood pressure control in men and women: an international perspective. J Hum Hypertens 24(5):336–344. https://doi.org/10.1038/jhh.2009.76

    Article  CAS  PubMed  Google Scholar 

  38. Gu Q, Burt VL, Paulose-Ram R, Dillon CF (2008) Gender differences in hypertension treatment, drug utilization patterns, and blood pressure control among US adults with hypertension: data from the National Health and Nutrition Examination Survey 1999–2004. Am J Hypertens 21(7):789–798. https://doi.org/10.1038/ajh.2008.185

    Article  PubMed  Google Scholar 

  39. Fillingim RB (2002) Sex differences in analgesic responses: evidence from experimental pain models. Eur J Anaesthesiol Suppl 26:16–24. https://doi.org/10.1097/00003643-200219261-00004

    Article  CAS  PubMed  Google Scholar 

  40. Krogstad BS, Jokstad A, Dahl BL, Vassend O (1996) The reporting of pain, somatic complaints, and anxiety in a group of patients with TMD before and 2 years after treatment: sex differences. J Orofac Pain 10(3):263–269

    CAS  PubMed  Google Scholar 

  41. Jensen IB, Bergstrom G, Ljungquist T, Bodin L, Nygren AL (2001) A randomized controlled component analysis of a behavioral medicine rehabilitation program for chronic spinal pain: are the effects dependent on gender? Pain 91(1–2):65–78. https://doi.org/10.1016/s0304-3959(00)00420-6

    Article  CAS  PubMed  Google Scholar 

  42. Kumar K, Toth C, Nath RK, Laing P (1998) Epidural spinal cord stimulation for treatment of chronic pain–some predictors of success. A 15-year experience. Surg Neurol 50(2):110–120

    Article  CAS  Google Scholar 

  43. Myers CD, Robinson ME, Riley JL 3rd, Sheffield D (2001) Sex, gender, and blood pressure: contributions to experimental pain report. Psychosom Med 63(4):545–550. https://doi.org/10.1097/00006842-200107000-00004

    Article  CAS  PubMed  Google Scholar 

  44. Galer BS, Jensen MP (1997) Development and preliminary validation of a pain measure specific to neuropathic pain: the neuropathic pain scale. Neurology 48(2):332–338. https://doi.org/10.1212/wnl.48.2.332

    Article  CAS  PubMed  Google Scholar 

  45. Yusuf S, Lonn E, Pais P, Bosch J, Lopez-Jaramillo P, Zhu J, Xavier D, Avezum A, Leiter LA, Piegas LS, Parkhomenko A, Keltai M, Keltai K, Sliwa K, Chazova I, Peters RJ, Held C, Yusoff K, Lewis BS, Jansky P, Khunti K, Toff WD, Reid CM, Varigos J, Accini JL, McKelvie R, Pogue J, Jung H, Liu L, Diaz R, Dans A, Dagenais G, Investigators H (2016) Blood-pressure and cholesterol lowering in persons without cardiovascular disease. N Engl J Med 374(21):2032–2043. https://doi.org/10.1056/NEJMoa1600177

    Article  CAS  PubMed  Google Scholar 

  46. Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL, O'Connor PJ, Selby JV, Ho PM (2012) Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation 125(13):1635–1642. https://doi.org/10.1161/CIRCULATIONAHA.111.068064

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Institute for Clinical and Translational Science (ICTS) for their assistance with data collection using TriNetX, and continued support from the Department of Neurosurgery at the University of Iowa.

Funding

This work was supported in part by the Iowa Cardiovascular Interdisciplinary Research Fellowship (T32HL007121) (SWH), American Heart Association grants 17POST33440101 (SWH) and 13SDG143400012 (GLP), and ICTS grant UL1TR002537 NIH research program grant P01 HL014388-48 (FMA, GLP, JGF).

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in the study’s conception and design, the drafting and revision of this paper, and final approval of the version to be published.

Corresponding author

Correspondence to Seth W. Holwerda.

Ethics declarations

Conflict of interest

The authors have no affiliations with or involvement in any organization or entity with any financial interest in the subject matter discussed in this manuscript. A patent is currently pending for use of epidural spinal cord stimulation to increase peripheral blood flow (SWH, MTH, GLP).

Ethical approval

This study was conducted according to the guidelines laid down by the Declaration of Helsinki of 1964, as revised in 2013, and all procedures were approved by the Institutional Review Board (IRB) at the University of Iowa (Project#: 201,805,969). Waiver of informed consent was granted by the institutional review board (IRB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holwerda, S.W., Holland, M.T., Green, A.L. et al. Dissociation between reduced pain and arterial blood pressure following epidural spinal cord stimulation in patients with chronic pain: A retrospective study. Clin Auton Res 31, 303–316 (2021). https://doi.org/10.1007/s10286-020-00690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-020-00690-5

Keywords

Navigation