Exercise-based cardiac rehabilitation and parasympathetic function in patients with coronary artery disease: a systematic review and meta-analysis



The effects of exercise-based cardiac rehabilitation (CR) on parasympathetic modulation are controversial. This systematic review and meta-analysis aims to (a) determine the effect of exercise-based CR on heart-rate-derived indices associated with cardiac parasympathetic modulation in resting and post-exercise conditions in coronary artery disease (CAD) patients and (b) identify the possible moderator variables of the effect of exercise-based CR on parasympathetic modulation.


We searched CENTRAL and Web of Science up to November 2018 for the following terms: adult CAD patients, controlled exercise-based CR interventions and parasympathetic modulation measured in resting (vagal-related heart rate variability [HRV] indices of the root mean square of the differences in successive in RR interval [RMSSD] and high frequency [HF]) and post-exercise (heart rate recovery [HRR]) pre- and post-intervention. We estimated a random-effects model of standardised mean difference (SMD) and mean difference (MD) for vagal-related HRV indices and HRR, respectively. We assessed the influence of categorical and continuous variables.


The overall effect size showed significant differences in RMSSD (SMD+ = 0.30; 95% confidence interval [CI] = 0.12–0.49) and HRR (MD+ = 5.35; 95% CI = 4.08–6.61 bpm) in favour of the exercise-based CR group. The overall effect size showed no differences in HF between groups (SMD+ = 0.14; 95% CI,  −0.12–0.40). Heterogeneity analyses reached statistical significance, with high heterogeneity for HF (p < 0.001; I2 = 70%) and HRR (p < 0.001; I2 = 85%). Analysis of the moderator variables showed that the effect on HRR is greater in young patients (p = 0.008) and patients treated with percutaneous intervention (p = 0.020).


Exercise-based CR improves the post-exercise parasympathetic function, with greater effects in younger CAD patients and in those who were revascularised with percutaneous intervention. The effects on resting parasympathetic function are more controversial due to methodological inconsistencies in measuring HRV, with the use of RMSSD recommended instead of HF because its results show higher consistency. Future studies involving women, focusing on methodological issues, and performing other training methods are needed to increase our knowledge about this topic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Bauernschmitt R, Malberg H, Wessel N, Kopp B, Schirmbeck E, Lange R (2004) Impairment of cardiovascular autonomic control in patients early after cardiac surgery. Eur J Cardiothorac Surg 25(3):320–326

    CAS  PubMed  Google Scholar 

  2. 2.

    La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. The lancet 351(9101):478–484

    Google Scholar 

  3. 3.

    Lipinski MJ, Vetrovec GW, Froelicher VF (2004) Importance of the first two minutes of heart rate recovery after exercise treadmill testing in predicting mortality and the presence of coronary artery disease in men. Am J Cardiol 93(4):445–449

    PubMed  Google Scholar 

  4. 4.

    Morshedi-Meibodi A, Larson MG, Levy D, O’Donnell CJ, Vasan RS (2002) Heart rate recovery after treadmill exercise testing and risk of cardiovascular disease events (The Framingham Heart Study). Am J Cardiol 90(8):848–852

    PubMed  Google Scholar 

  5. 5.

    Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS (1999) Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 341(18):1351–1357

    CAS  PubMed  Google Scholar 

  6. 6.

    Farrell TG, Bashir Y, Cripps T, Malik M, Poloniecki J, Bennett ED et al (1991) Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J Am Coll Cardiol 18(3):687–697

    CAS  PubMed  Google Scholar 

  7. 7.

    Huikuri HV, Exner DV, Kavanagh KM, Aggarwal SG, Mitchell LB, Messier MD et al (2010) Attenuated recovery of heart rate turbulence early after myocardial infarction identifies patients at high risk for fatal or near-fatal arrhythmic events. Heart rhythm 7(2):229–235

    PubMed  Google Scholar 

  8. 8.

    Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59(4):256–262

    CAS  PubMed  Google Scholar 

  9. 9.

    Lombardi F, Mäkikallio TH, Myerburg RJ, Huikuri HV (2001) Sudden cardiac death: role of heart rate variability to identify patients at risk. Cardiovasc Res 50(2):210–217

    CAS  PubMed  Google Scholar 

  10. 10.

    Nishime EO, Cole CR, Blackstone EH, Pashkow FJ, Lauer MS (2000) Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG. JAMA 284(11):1392–1398. https://doi.org/10.1001/jama.284.11.1392

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Anderson L, Oldridge N, Thompson DR, Zwisler A-D, Rees K, Martin N et al (2016) Exercise-based cardiac rehabilitation for coronary heart disease: Cochrane systematic review and meta-analysis. J Am Coll Cardiol 67(1):1–12

    PubMed  Google Scholar 

  12. 12.

    Conraads VM, Pattyn N, De Maeyer C, Beckers PJ, Coeckelberghs E, Cornelissen VA et al (2015) Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX-CAD study. Int J Cardiol 179:203–210

    PubMed  Google Scholar 

  13. 13.

    Iellamo F, Volterrani M, Di Gianfrancesco A, Fossati C, Casasco M (2018) The effect of exercise training on autonomic cardiovascular regulation: from cardiac patients to athletes. Curr Sports Med Rep 17(12):473–479

    PubMed  Google Scholar 

  14. 14.

    Nenna A, Lusini M, Spadaccio C, Nappi F, Greco SM, Barbato R et al (2017) Heart rate variability: A new tool to predict complications in adult cardiac surgery. J Geriatr Cardiol 14(11):662

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Task Force of European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use Circulation. 1996;93(5):1043–65

  16. 16.

    Peçanha T, Silva-Júnior ND, Forjaz CL (2014) Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases. Clin Physiol Funct Imag 34(5):327–339

    Google Scholar 

  17. 17.

    Peçanha T, Bartels R, Brito LC, Paula-Ribeiro M, Oliveira RS, Goldberger JJ (2017) Methods of assessment of the post-exercise cardiac autonomic recovery: a methodological review. Int J Cardiol 227:795–802

    PubMed  Google Scholar 

  18. 18.

    Coote JH (2010) Recovery of heart rate following intense dynamic exercise. Exp Physiol 95(3):431–440

    PubMed  Google Scholar 

  19. 19.

    Goldberger JJ, Johnson NP, Subacius H, Ng J, Greenland P (2014) Comparison of the physiologic and prognostic implications of the heart rate versus the RR interval. Heart Rhythm 11(11):1925–1933

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kannankeril PJ, Le FK, Kadish AH, Goldberger JJ (2004) Parasympathetic effects on heart rate recovery after exercise. J Investig Med 52(6):394–401

    PubMed  Google Scholar 

  21. 21.

    Dewland TA, Androne AS, Lee FA, Lampert RJ, Katz SD (2007) Effect of acetylcholinesterase inhibition with pyridostigmine on cardiac parasympathetic function in sedentary adults and trained athletes. Am J Physiol Heart Circulatory Physiol 293(1):H86–H92

    CAS  Google Scholar 

  22. 22.

    Butz A, Kober G (2000) The influence of physical training during rehabilitation on heart rate variability in patients after myocardial infarction. Herz Kreislauf 32(1):9–15

    Google Scholar 

  23. 23.

    Currie KD, Rosen LM, Millar PJ, McKelvie RS, MacDonald MJ (2013) Heart rate recovery and heart rate variability are unchanged in patients with coronary artery disease following 12 weeks of high-intensity interval and moderate-intensity endurance exercise training. Appl Physiol Nutr Metab 38(6):644–650

    PubMed  Google Scholar 

  24. 24.

    Nascimento PMC, Vieira MC, Sperandei S, Serra SM (2016) Supervised exercise improves autonomic modulation in participants in cardiac rehabilitation programs. Revista Portuguesa de Cardiologia (English Edition) 35(1):19–24

    Google Scholar 

  25. 25.

    Mendes RG, Simões RP, Costa FDSM, Pantoni CBF, Di Thommazo L, Luzzi S et al (2010) Short-term supervised inpatient physiotherapy exercise protocol improves cardiac autonomic function after coronary artery bypass graft surgery–a randomised controlled trial. Disabil Rehabil 32(16):1320–1327

    PubMed  Google Scholar 

  26. 26.

    Sandercock G, Bromley PD, Brodie DA (2005) Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc 37(3):433–439

    PubMed  Google Scholar 

  27. 27.

    Michael S, Graham KS, Davis GM (2017) Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—a review. Front Physiol 8:301

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Billman GE, Huikuri HV, Sacha J, Trimmel K (2015) An introduction to heart rate variability: methodological considerations and clinical applications. Front Physiol 6:55

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Catai AM, Pastre CM, de Godoy MF, da Silva E, de Medeiros Takahashi AC, Vanderlei LCM (2019) Heart rate variability: are you using it properly? Standardisation checklist of procedures. Brazil J Phys Ther 24:91–102

    Google Scholar 

  30. 30.

    Nolan RP, Jong P, Barry-Bianchi SM, Tanaka TH, Floras JS (2008) Effects of drug, biobehavioral and exercise therapies on heart rate variability in coronary artery disease: a systematic review. Eur J Cardiovasc Prev Rehabil 15(4):386–396

    PubMed  Google Scholar 

  31. 31.

    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269

    PubMed  Google Scholar 

  32. 32.

    Fagard RH (2001) A population-based study on the determinants of heart rate and heart rate variability in the frequency domain. Verhandelingen-Koninklijke Academie Voor Geneeskunde van Belgie 63(1):57–89

    CAS  PubMed  Google Scholar 

  33. 33.

    Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Higgins JP, White IR, Anzures-Cabrera J (2008) Meta-analysis of skewed data: combining results reported on log-transformed or raw scales. Stat Med 27(29):6072–6092

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386

    Google Scholar 

  36. 36.

    Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge, UK

    Google Scholar 

  37. 37.

    Rosenthal R (1991) Meta-analytic procedures for social research. Sage, New York

    Google Scholar 

  38. 38.

    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    PubMed  Google Scholar 

  39. 39.

    Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J (2006) Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 11(2):193

    PubMed  Google Scholar 

  40. 40.

    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Cooper H, Hedges LV (1994) The handbook of research synthesis. In: Cooper H, Hedges LV. Russell Sage Foundation, 1994, New York

  42. 42.

    Rothstein HR, Sutton AJ, Borenstein M (2005) Publication bias in meta-analysis. Prevention, assessment and adjustments 1–7

  43. 43.

    Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463

    CAS  PubMed  Google Scholar 

  45. 45.

    Hedges L, Cooper H (2009) Research synthesis as a scientific process. The handbook of research synthesis and meta-analysis. 1

  46. 46.

    Hoaglin DC, Iglewicz B (1987) Fine-tuning some resistant rules for outlier labeling. J Am Stat Assoc 82(400):1147–1149

    Google Scholar 

  47. 47.

    Oya M, Itoh H, Kato K, Tanabe K, Murayama M (1999) Effects of exercise training on the recovery of the autonomic nervous system and exercise capacity after acute myocardial infarction. Jpn Circ J 63(11):843–848

    CAS  PubMed  Google Scholar 

  48. 48.

    Blumenthal JA, Sherwood A, Babyak MA, Watkins LL, Waugh R, Georgiades A et al (2005) Effects of exercise and stress management training on markers of cardiovascular risk in patients with ischemic heart disease: a randomized controlled trial. JAMA 293(13):1626–1634. https://doi.org/10.1001/jama.293.13.1626

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Blumenthal JA, Sherwood A, Babyak MA, Watkins LL, Smith PJ, Hoffman BM et al (2012) Exercise and pharmacological treatment of depressive symptoms in patients with coronary heart disease: results from the UPBEAT (Understanding the Prognostic Benefits of Exercise and Antidepressant Therapy) study. J Am Coll Cardiol 60(12):1053–1063. https://doi.org/10.1016/j.jacc.2012.04.040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Fujimoto S, Uemura S, Tomoda Y, Yamamoto H, Matsukura Y, Hashimoto T et al (1997) Effects of physical training on autonomic nerve activity in patients with acute myocardial infarction. J Cardiol 29(2):85–93

    CAS  PubMed  Google Scholar 

  51. 51.

    Leitch JW, Newling RP, Basta M, Inder K, Dear K, Fletcher PJ (1997) Randomized trial of a hospital-based exercise training program after acute myocardial infarction: cardiac autonomic effects. J Am Coll Cardiol 29(6):1263–1268

    CAS  PubMed  Google Scholar 

  52. 52.

    Caruso FR, Arena R, Phillips SA, Bonjorno JC, Mendes RG, Arakelian VM et al (2015) Resistance exercise training improves heart rate variability and muscle performance: a randomized controlled trial in coronary artery disease patients. Eur J Phys Rehabil Med 51(3):281–289

    CAS  PubMed  Google Scholar 

  53. 53.

    Laing ST, Gluckman TJ, Weinberg KM, Lahiri MK, Ng J, Goldberger JJ (2011) Autonomic Effects of Exercise-Based Cardiac Rehabilitation. J Cardiopulm Rehabil Prev 31(2):87–91. https://doi.org/10.1097/HCR.0b013e3181f1fda0

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Cinquegrana G, Spinelli L, D'Aniello L, Landi M, D'Aniello MT, Meccariello P (2002) Exercise training improves diastolic perfusion time in patients with coronary artery disease. Heart Dis 4(1):13–17

    PubMed  Google Scholar 

  55. 55.

    Gaeini AA, Fallahi AA, Kazemi F (2015) Effects of aerobic continuous and interval training on rate-pressure product in patients after CABG surgery. J Sports Med Phys Fitness 55(1–2):76–83

    CAS  PubMed  Google Scholar 

  56. 56.

    Galetta F, Puccini E, Lunardi M, Stella SM, Rossi M, Cini G et al (1994) Effects of rehabilitation on cardiovascular autonomic function in ischemic cardiopathy. Recenti Prog Med 85(12):566–569

    CAS  PubMed  Google Scholar 

  57. 57.

    Newton M, Mutrie N, McArthur JD (1991) The effects of exercise in a coronary rehabilitation programme. Scott Med J 36(2):38–41. https://doi.org/10.1177/003693309103600203

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Giallauria F, De Lorenzo A, Pilerci F, Manakos A, Lucci R, Psaroudaki M et al (2006) Long-term effects of cardiac rehabilitation on end-exercise heart rate recovery after myocardial infarction. Eur J Cardiovasc Prev Rehabil 13(4):544–550. https://doi.org/10.1097/01.hjr.0000216547.07432.fb

    Article  PubMed  Google Scholar 

  59. 59.

    Legramante JM, Iellamo F, Massaro M, Sacco S, Galante A (2007) Effects of residential exercise training on heart rate recovery in coronary artery patients. Am J Physiol Heart Circ Physiol 292(1):H510–H515. https://doi.org/10.1152/ajpheart.00748.2006

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Malfatto G, Facchini M, Bragato R, Branzi G, Sala L, Leonetti G (1996) Short and long term effects of exercise training on the tonic autonomic modulation of heart rate variability after myocardial infarction. Eur Heart J 17(4):532–538

    CAS  PubMed  Google Scholar 

  61. 61.

    Kałka D, Domagała Z, Kowalewski P, Rusiecki L, Wojcieszczyk J, Kolęda P et al (2013) The influence of endurance training intensity on dynamics of post-exertional heart rate recovery adaptation in patients with ischemic heart disease. Adv Med Sci 58(1):50–57. https://doi.org/10.2478/v10039-012-0073-z

    Article  PubMed  Google Scholar 

  62. 62.

    Santos-Hiss MDB, Melo RC, Neves VR, Hiss FC, Verzola RMM, Silva E et al (2011) Effects of progressive exercise during phase I cardiac rehabilitation on the heart rate variability of patients with acute myocardial infarction. Disabil Rehabil 33(10):835–842. https://doi.org/10.3109/09638288.2010.514016

    Article  PubMed  Google Scholar 

  63. 63.

    Wang LW, Ou SH, Tsai CS, Chang YC, Kao CW (2016) Multimedia exercise training program improves distance walked, heart rate recovery, and self-efficacy in cardiac surgery patients. J Cardiovasc Nurs 31(4):343–349. https://doi.org/10.1097/jcn.0000000000000246

    Article  PubMed  Google Scholar 

  64. 64.

    Carunchio A, Fera MS, Bordi L, Daniele R, Rulli F, Coletta C et al (2000) The effect of cardiovascular rehabilitation on the variability of the RR cycle after a first uncomplicated acute myocardial infarct. Italian Heart J Suppl 1(2):241–249

    CAS  Google Scholar 

  65. 65.

    Tamburus NY, Paula RFL, Kunz VC, Cesar MC, Moreno MA, da Silva E (2015) Interval training based on ventilatory anaerobic threshold increases cardiac vagal modulation and decreases high-sensitivity c-reative protein: randomized clinical trial in coronary artery disease. Brazil J Phys Therapy 19(6):441–450. https://doi.org/10.1590/bjpt-rbf.2014.0124

    Article  Google Scholar 

  66. 66.

    Noites A, Freitas CP, Pinto J, Melo C, Vieira Á, Albuquerque A et al (2017) Effects of a phase IV home-based cardiac rehabilitation program on cardiorespiratory fitness and physical activity. Heart Lung Circ 26(5):455–462. https://doi.org/10.1016/j.hlc.2016.08.004

    Article  PubMed  Google Scholar 

  67. 67.

    Mazzuero G, Lanfranchi P, Colombo R, Giannuzzi P, Giordano A (1992) Long-term adaptation of 24-h heart rate variability after myocardial infarction. The EAMI Study Group. Exercise training in anterior myocardial infarction. Chest 101(5 Suppl):304–8

    Google Scholar 

  68. 68.

    Fujimoto S, Uemura S, Tomoda Y, Yamamoto H, Matsukura Y, Horii M et al (1999) Effects of exercise training on the heart rate variability and QT dispersion of patients with acute myocardial infarction. Jpn Circ J 63(8):577–582

    CAS  PubMed  Google Scholar 

  69. 69.

    Duru F, Candinas R, Dziekan G, Goebbels U, Myers J, Dubach P (2000) Effect of exercise training on heart rate variability in patients with new-onset left ventricular dysfunction after myocardial infarction. Am Heart J 140(1):157–161. https://doi.org/10.1067/mhj.2000.106606

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    La Rovere MT, Mortara A, Sandrone G, Lombardi F (1992) Autonomic nervous system adaptations to short-term exercise training. Chest 101(5 Suppl):299S–303S

    PubMed  Google Scholar 

  71. 71.

    Lai FC, Tu ST, Huang CH, Jeng C (2011) A home-based exercise program improves heart rate variability and functional capacity among postmenopausal women with coronary artery disease. J Cardiovasc Nurs 26(2):137–144. https://doi.org/10.1097/JCN.0b013e3181ed9424

    Article  PubMed  Google Scholar 

  72. 72.

    Lucini D, Milani RV, Costantino G, Lavie CJ, Porta A, Pagani M (2002) Effects of cardiac rehabilitation and exercise training on autonomic regulation in patients with coronary artery disease. Am Heart J 143(6):977–983. https://doi.org/10.1067/mhj.2002.123117

    Article  PubMed  Google Scholar 

  73. 73.

    Malfatto G, Facchini M, Sala L, Branzi G, Bragato R, Leonetti G (1998) Effects of cardiac rehabilitation and beta-blocker therapy on heart rate variability after first acute myocardial infarction. Am J Cardiol 81(7):834–840. https://doi.org/10.1016/s0002-9149(98)00021-6

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Martinez DG, Nicolau JC, Lage RL, Toschi-Dias E, de Matos LD, Alves MJ et al (2011) Effects of long-term exercise training on autonomic control in myocardial infarction patients. Hypertension. 58(6):1049–56. https://doi.org/10.1161/HYPERTENSIONAHA.111.176644

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Munk PS, Butt N, Larsen AI (2010) High-intensity interval exercise training improves heart rate variability in patients following percutaneous coronary intervention for angina pectoris. Int J Cardiol 145(2):312–314. https://doi.org/10.1016/j.ijcard.2009.11.015

    Article  PubMed  Google Scholar 

  76. 76.

    Oliveira NL, Ribeiro F, Teixeira M, Campos L, Alves AJ, Silva G et al (2014) Effect of 8-week exercise-based cardiac rehabilitation on cardiac autonomic function: a randomized controlled trial in myocardial infarction patients. Am Heart J 167(5):753–61.e3. https://doi.org/10.1016/j.ahj.2014.02.001

    Article  PubMed  Google Scholar 

  77. 77.

    Sandercock GRH, Grocott-Mason R, Brodie DA (2007) Changes in short-term measures of heart rate variability after eight weeks of cardiac rehabilitation. Clin Auton Res 17(1):39–45. https://doi.org/10.1007/s10286-007-0392-5

    Article  PubMed  Google Scholar 

  78. 78.

    Stâhle A, Nordlander R, Bergfeldt L (1999) Aerobic group training improves exercise capacity and heart rate variability in elderly patients with a recent coronary event. A randomized controlled study. Eur Heart J 20(22):1638–46. https://doi.org/10.1053/euhj.1999.1715

    Article  PubMed  Google Scholar 

  79. 79.

    Takeyama J, Itoh H, Kato M, Koike A, Aoki K, Fu LT et al (2000) Effects of physical training on the recovery of the autonomic nervous activity during exercise after coronary artery bypass grafting: effects of physical training after CABG. Jpn Circ J 64(11):809–813

    CAS  PubMed  Google Scholar 

  80. 80.

    Tsai MW, Chie WC, Kuo TB, Chen MF, Liu JP, Chen TT et al (2006) Effects of exercise training on heart rate variability after coronary angioplasty. Phys Ther 86(5):626–635

    PubMed  Google Scholar 

  81. 81.

    Chen CH, Chen YJ, Tu HP, Huang MH, Jhong JH, Lin KL (2014) Benefits of exercise training and the correlation between aerobic capacity and functional outcomes and quality of life in elderly patients with coronary artery disease. Kaohsiung J Med Sci 30(10):521–530. https://doi.org/10.1016/j.kjms.2014.08.004

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Giallauria F, Lucci R, Pietrosante M, Gargiulo G, De Lorenzo A, D'Agostino M et al (2006) Exercise-based cardiac rehabilitation improves heart rate recovery in elderly patients after acute myocardial infarction. J Gerontol Series Biolog Sci Med Sci 61(7):713–717. https://doi.org/10.1093/gerona/61.7.713

    Article  Google Scholar 

  83. 83.

    Giallauria F, Cirillo P, D'Agostino M, Petrillo G, Vitelli A, Pacileo M et al (2011) Effects of exercise training on high-mobility group box-1 levels after acute myocardial infarction. J Cardiac Fail 17(2):108–114. https://doi.org/10.1016/j.cardfail.2010.09.001

    CAS  Article  Google Scholar 

  84. 84.

    Ribeiro F, Alves AJ, Teixeira M, Miranda F, Azevedo C, Duarte JA et al (2012) Exercise training enhances autonomic function after acute myocardial infarction: a randomized controlled study. Revista portuguesa de cardiologia [Portuguese J Cardiol] 31(2):135–141. https://doi.org/10.1016/j.repc.2011.12.009

    Article  Google Scholar 

  85. 85.

    Kalka D, Domagala Z, Rusiecki L, Karpinski L, Gebala J, Koleda P et al (2016) Heart rate recovery, cardiac rehabilitation and erectile dysfunction in males with ischaemic heart disease. Anatol J Cardiol 16(4):256–263. https://doi.org/10.5152/AnatolJCardiol.2015.6122

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Medeiros WM, de Luca FA, de Figueredo AR, Mendes FAR, Gun C (2018) Heart rate recovery improvement in patients following acute myocardial infarction: exercise training, β-blocker therapy or both. Clin Physiol Funct Imag 38(3):351–359. https://doi.org/10.1111/cpf.12420

    Article  Google Scholar 

  87. 87.

    Tsai SW, Lin YW, Wu SK (2005) The effect of cardiac rehabilitation on recovery of heart rate over one minute after exercise in patients with coronary artery bypass graft surgery. Clin Rehabil 19(8):843–849. https://doi.org/10.1191/0269215505cr915oa

    Article  PubMed  Google Scholar 

  88. 88.

    Wu SK, Lin YW, Chen CL, Tsai SW (2006) Cardiac rehabilitation vs. home exercise after coronary artery bypass graft surgery: a comparison of heart rate recovery. Am J Phys Med Rehabil 85(9):711–7. https://doi.org/10.1097/01.phm.0000228597.64057.66

    Article  PubMed  Google Scholar 

  89. 89.

    Zheng H, Luo M, Shen Y, Ma Y, Kang W (2008) Effects of 6 months exercise training on ventricular remodelling and autonomic tone in patients with acute myocardial infarction and percutaneous coronary intervention. J Rehabil Med 40(9):776–779. https://doi.org/10.2340/16501977-0254

    Article  PubMed  Google Scholar 

  90. 90.

    Mainardi LT (1887) On the quantification of heart rate variability spectral parameters using time–frequency and time-varying methods. Philos Trans Royal Soc 2008(367):255–275

    Google Scholar 

  91. 91.

    Takahashi AC, Porta A, Melo RC, Quitério RJ, da Silva E, Borghi-Silva A et al (2012) Aging reduces complexity of heart rate variability assessed by conditional entropy and symbolic analysis. Intern Emerg Med 7(3):229–235

    PubMed  Google Scholar 

  92. 92.

    Kaye DM, Esler MD (2008) Autonomic control of the aging heart. NeuroMol Med 10(3):179–186

    CAS  Google Scholar 

  93. 93.

    Ueno LM, Hamada T, Moritani T (2002) Cardiac autonomic nervous activities and cardiorespiratory fitness in older men. J Gerontol Series A 57(9):M605–M610

    Google Scholar 

  94. 94.

    Wichi RB, De Angelis K, Jones L, Irigoyen MC (2009) A brief review of chronic exercise intervention to prevent autonomic nervous system changes during the aging process. Clinics 64(3):253–258

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Dutra SG, Pereira APM, Tezini GC, Mazon JH, Martins-Pinge MC, Souza HC (2013) Cardiac autonomic modulation is determined by gender and is independent of aerobic physical capacity in healthy subjects. PloS one 8(10)

  96. 96.

    Pinheiro ADO, Pereira VL Jr, Baltatu OC, Campos L (2015) Cardiac autonomic dysfunction in elderly women with myocardial infarction. Curr Med Res Opin 31(10):1849–1854

    Google Scholar 

  97. 97.

    Botek M, Krejčí J, McKune A (2018) Sex differences in autonomic cardiac control and oxygen saturation response to short-term normobaric hypoxia and following recovery: effect of aerobic fitness. Front Endocrinol 9:697

    Google Scholar 

  98. 98.

    Christensen AV, Zwisler AD, Svendsen JH, Pedersen PU, Blunk L, Thygesen LC et al (2015) Effect of Cardiac Rehabilitation in Patients with ICD: Are Gender Differences Present? Results from the COPE-ICD Trial. Pacing Clin Electrophysiol 38(1):18–27

    PubMed  Google Scholar 

  99. 99.

    Raffin J, Barthélémy J-C, Dupré C, Pichot V, Berger M, Féasson L et al (2019) Exercise frequency determines heart rate variability gains in older people: a meta-analysis and meta-regression. Sports Med 49(5):719–729

    PubMed  Google Scholar 

  100. 100.

    Demirel Ş, Akkaya V, Oflaz H, Tükek T, Erk O (2002) Heart Rate Variability After Coronary Artery Bypass Graft Surgery: A Prospective 3-Year Follow-Up Study. Ann Noninvasive Electrocardiol 7(3):247–50

    PubMed  Google Scholar 

  101. 101.

    Laitio TT, Huikuri HV, Koskenvuo J, Jalonen J, Mäkikallio TH, Helenius H et al (2006) Long-term alterations of heart rate dynamics after coronary artery bypass graft surgery. Anesth Analg 102(4):1026–1031

    PubMed  Google Scholar 

  102. 102.

    Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nature Rev Cardiol 11(5):255

    CAS  Google Scholar 

  103. 103.

    Collins Z, Suskin N, Aggarwal S, Grace S (2015) Cardiac rehabilitation wait times and relation to patient outcomes. Eur J Phys Rehabil Med 51(3):301–309

    CAS  PubMed  Google Scholar 

  104. 104.

    Haykowsky M, Scott J, Esch B, Schopflocher D, Myers J, Paterson I et al (2011) A meta-analysis of the effects of exercise training on left ventricular remodeling following myocardial infarction: start early and go longer for greatest exercise benefits on remodeling. Trials 12(1):92

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Badrov MB, Wood KN, Lalande S, Sawicki CP, Borrell LJ, Barron CC et al (2019) Effects of 6 Months of exercise-based cardiac rehabilitation on autonomic function and neuro-cardiovascular stress reactivity in coronary artery disease patients. J Am Heart Assoc 8(17):e012257

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Szmigielska K, Szmigielska-Kapłon A, Jegier A (2018) The influence of comprehensive cardiac rehabilitation on heart rate variability indices after CABG is more effective than after PCI. J Cardiovasc Transl Res 11(1):50–57

    PubMed  Google Scholar 

  107. 107.

    Royston P, Altman DG, Sauerbrei W (2006) Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med 25(1):127–141

    PubMed  Google Scholar 

  108. 108.

    Buchheit M (2014) Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol 5:73

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Al Haddad H, Laursen P, Chollet D, Ahmaidi S, Buchheit M (2011) Reliability of resting and postexercise heart rate measures. Int J Sports Med 32(08):598–605

    CAS  PubMed  Google Scholar 

  110. 110.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M (2012) Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol 112(11):3729–3741

    PubMed  Google Scholar 

  111. 111.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M (2013) Evaluating training adaptation with heart-rate measures: a methodological comparison. Int J Sports Physiol Perform 8(6):688–91

    PubMed  Google Scholar 

  112. 112.

    Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33(12):889–919

    PubMed  Google Scholar 

  113. 113.

    Brown TE, Beightol LA, Koh J, Eckberg DL (1993) Important influence of respiration on human RR interval power spectra is largely ignored. J Appl Physiolog 75(5):2310–2317

    CAS  Google Scholar 

  114. 114.

    Bellenger CR, Fuller JT, Thomson RL, Davison K, Robertson EY, Buckley JD (2016) Monitoring athletic training status through autonomic heart rate regulation: a systematic review and meta-analysis. Sports Med 46(10):1461–1486

    PubMed  Google Scholar 

  115. 115.

    da Silva VP, de Oliveira NA, Silveira H, Mello RGT, Deslandes AC (2015) Heart rate variability indexes as a marker of chronic adaptation in athletes: a systematic review. Ann Noninvasive Electrocardiol 20(2):108–118

    PubMed  Google Scholar 

  116. 116.

    Buchheit M, Millet GP, Parisy A, Pourchez S, Laursen PB, Ahmaidi S et al (2008) Supramaximal training and postexercise parasympathetic reactivation in adolescents. Med Sci Sports Exerc 40(2):362–371

    PubMed  Google Scholar 

  117. 117.

    Kannankeril PJ, Goldberger JJ (2002) Parasympathetic effects on cardiac electrophysiology during exercise and recovery. Am J Physiol Heart Circ Physiol 282(6):H2091–H2098

    CAS  PubMed  Google Scholar 

  118. 118.

    Qiu S, Cai X, Sun Z, Li L, Zuegel M, Steinacker JM et al (2017) Heart rate recovery and risk of cardiovascular events and all-cause mortality: a meta-analysis of prospective cohort studies. J Am Heart Associat 6(5):e005505

    Google Scholar 

  119. 119.

    Beckie TM, Beckstead JW, Kip KE, Fletcher G (2014) Improvements in heart rate recovery among women after cardiac rehabilitation completion. J Cardiovasc Nurs 29(1):38

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Pattyn N, Beulque R, Cornelissen V (2018) Aerobic interval vs continuous training in patients with coronary artery disease or heart failure: an updated systematic review and meta-analysis with a focus on secondary outcomes. Sports Med 48(5):1189–205

    PubMed  Google Scholar 

  121. 121.

    Hautala AJ, Kiviniemi AM, Tulppo MP (2009) Individual responses to aerobic exercise: the role of the autonomic nervous system. Neurosci Biobehav Rev 33(2):107–115

    PubMed  Google Scholar 

Download references


Preparation of this article was not supported by any association or institution. Agustín Manresa-Rocamora was supported by a pre-doctoral grant given by the Ministerio de Educación, Cultura y Deporte, Spain (FPU17/01825).

Author information



Corresponding author

Correspondence to Manuel Moya-Ramón.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article was a meta-analysis and therefore did not require separate human ethics approval.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manresa-Rocamora, A., Ribeiro, F., Sarabia, J.M. et al. Exercise-based cardiac rehabilitation and parasympathetic function in patients with coronary artery disease: a systematic review and meta-analysis. Clin Auton Res 31, 187–203 (2021). https://doi.org/10.1007/s10286-020-00687-0

Download citation


  • Autonomic nervous system
  • Aerobic training
  • Resistance training
  • Acute myocardial infarction
  • Coronary heart disease