Skip to main content

Advertisement

Log in

Relationship between cardiac parasympathetic dysfunction and the anteroposterior diameter of the medulla oblongata in multiple system atrophy

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Neurodegeneration of the nucleus ambiguus and the dorsal vagal motor nucleus has been implicated in cardiac parasympathetic dysfunction in multiple system atrophy (MSA). The nucleus ambiguus and the dorsal vagal motor nucleus, which are located in the medulla oblongata (MO), control the autonomic—specifically, the parasympathetic—functions of the body. The aim of our study was to investigate the relationship between cardiac parasympathetic dysfunction and the anteroposterior diameter of the MO in MSA by quantitatively analyzing magnetic resonance imaging (MRI) outcome measures.

Methods

We retrospectively assessed 40 consecutive patients with probable MSA and 25 age- and sex-matched controls. The anteroposterior diameter of the MO at two locations (MO diameter-A and -B) and the diameters of the midbrain and pons were measured by conventional MRI. A cardiac parasympathetic function score (CP-score) and cardiac sympathetic function score (CS-score) were generated by calculating the z-scores of multiple autonomic function tests. The relationship between the scores and the measured diameters of the brainstem was also investigated.

Results

The CP-score and CS-score were significantly lower in the patients with MSA than in the controls (CP-score: 0.61 ± 0.75 vs. − 0.38 ± 0.52, p < 0.001; CS-score: 0.91 ± 1.06 vs. − 0.57 ± 1.07, p < 0.001). Also, in the patients with MSA, the CP-score was significantly correlated with MO diameter-A (r = 0.40, p = 0.010), and the CS-score was significantly correlated with the diameter of the midbrain (r = 0.33, p = 0.038).

Conclusion

The anteroposterior diameter of the MO is a potential imaging marker of parasympathetic dysfunction in MSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW, Colosimo C, Durr A, Fowler CJ, Kaufmann H, Klockgether T, Lees A, Poewe W, Quinn N, Revesz T, Robertson D, Sandroni P, Seppi K, Vidailhet M (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9):670–676. https://doi.org/10.1212/01.wnl.0000324625.00404.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tada M, Kakita A, Toyoshima Y, Onodera O, Ozawa T, Morita T, Nishizawa M, Takahashi H (2009) Depletion of medullary serotonergic neurons in patients with multiple system atrophy who succumbed to sudden death. Brain 132(Pt 7):1810–1819. https://doi.org/10.1093/brain/awp110

    Article  PubMed  Google Scholar 

  3. Watanabe H, Saito Y, Terao S, Ando T, Kachi T, Mukai E, Aiba I, Abe Y, Tamakoshi A, Doyu M, Hirayama M, Sobue G (2002) Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain 125(Pt 5):1070–1083. https://doi.org/10.1093/brain/awf117

    Article  PubMed  Google Scholar 

  4. Coon EA, Sletten DM, Suarez MD, Mandrekar JN, Ahlskog JE, Bower JH, Matsumoto JY, Silber MH, Benarroch EE, Fealey RD, Sandroni P, Low PA, Singer W (2015) Clinical features and autonomic testing predict survival in multiple system atrophy. Brain 138(Pt 12):3623–3631. https://doi.org/10.1093/brain/awv274

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ha AD, Brown CH, York MK, Jankovic J (2011) The prevalence of symptomatic orthostatic hypotension in patients with Parkinson's disease and atypical parkinsonism. Parkinsonism Relat Disord 17(8):625–628. https://doi.org/10.1016/j.parkreldis.2011.05.020

    Article  PubMed  Google Scholar 

  6. Suzuki J, Nakamura T, Hirayama M, Mizutani Y, Okada A, Ito M, Watanabe H, Sobue G (2015) Impaired peripheral vasoconstrictor response to orthostatic stress in patients with multiple system atrophy. Parkinsonism Relat Disord 21(8):917–922. https://doi.org/10.1016/j.parkreldis.2015.05.023

    Article  PubMed  Google Scholar 

  7. Massey LA, Micallef C, Paviour DC, O'Sullivan SS, Ling H, Williams DR, Kallis C, Holton JL, Revesz T, Burn DJ, Yousry T, Lees AJ, Fox NC, Jager HR (2012) Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord 27(14):1754–1762. https://doi.org/10.1002/mds.24968

    Article  PubMed  Google Scholar 

  8. Schrag A, Kingsley D, Phatouros C, Mathias CJ, Lees AJ, Daniel SE, Quinn NP (1998) Clinical usefulness of magnetic resonance imaging in multiple system atrophy. J Neurol Neurosurg Psychiatry 65(1):65–71. https://doi.org/10.1136/jnnp.65.1.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Massey LA, Jager HR, Paviour DC, O'Sullivan SS, Ling H, Williams DR, Kallis C, Holton J, Revesz T, Burn DJ, Yousry T, Lees AJ, Fox NC, Micallef C (2013) The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology 80(20):1856–1861. https://doi.org/10.1212/WNL.0b013e318292a2d2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wenning GK, Tison F, Ben Shlomo Y, Daniel SE, Quinn NP (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12(2):133–147. https://doi.org/10.1002/mds.870120203

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida M (2007) Multiple system atrophy: alpha-synuclein and neuronal degeneration. Neuropathology 27(5):484–493. https://doi.org/10.5692/clinicalneurol.51.838

    Article  PubMed  Google Scholar 

  12. Benarroch EE, Schmeichel AM, Sandroni P, Low PA, Parisi JE (2006) Involvement of vagal autonomic nuclei in multiple system atrophy and Lewy body disease. Neurology 66(3):378–383. https://doi.org/10.1212/01.wnl.0000196638.98781.bb

    Article  CAS  PubMed  Google Scholar 

  13. Reginold W, Lang AE, Marras C, Heyn C, Alharbi M, Mikulis DJ (2014) Longitudinal quantitative MRI in multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat Disord 20(2):222–225. https://doi.org/10.1016/j.parkreldis.2013.10.002

    Article  PubMed  Google Scholar 

  14. Nakamura T, Suzuki M, Ueda M, Hirayama M, Katsuno M (2017) Lower body mass index is associated with orthostatic hypotension in Parkinson's disease. J Neurol Sci 372:14–18. https://doi.org/10.1016/j.jns.2016.11.027

    Article  PubMed  Google Scholar 

  15. Nakamura T, Suzuki M, Okada A, Suzuki J, Hasegawa S, Koike H, Hirayama M, Katsuno M, Sobue G (2016) Association of leptin with orthostatic blood pressure changes in Parkinson's disease. Mov Disord 31(9):1417–1421. https://doi.org/10.1002/mds.26678

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki M, Nakamura T, Hirayama M, Ueda M, Katsuno M, Sobue G (2017) Cardiac parasympathetic dysfunction in the early phase of Parkinson's disease. J Neurol 264(2):333–340. https://doi.org/10.1007/s00415-016-8348-0

    Article  CAS  PubMed  Google Scholar 

  17. Lin K, Wei L, Huang Z, Zeng Q (2017) Combination of Ewing test, heart rate variability, and heart rate turbulence analysis for early diagnosis of diabetic cardiac autonomic neuropathy. Medicine 96(45):e8296. https://doi.org/10.1097/md.0000000000008296

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bellavere F, Ragazzi E, Chilelli NC, Lapolla A, Bax G (2018) Autonomic testing: which value for each cardiovascular test? An observational study. Acta Diabetol. https://doi.org/10.1007/s00592-018-1215-y

    Article  PubMed  Google Scholar 

  19. Pavy-LeTraon A, Brefel-Courbon C, Dupouy J, Ory-Magne F, Rascol O, Senard JM (2018) Combined cardiovascular and sweating autonomic testing to differentiate multiple system atrophy from Parkinson's disease. Neurophysiol Clin 48(2):103–110. https://doi.org/10.1016/j.neucli.2017.11.003

    Article  PubMed  Google Scholar 

  20. Asato R, Akiguchi I, Masunaga S, Hashimoto N (2000) Magnetic resonance imaging distinguishes progressive supranuclear palsy from multiple system atrophy. J Neural Transm (Vienna) 107(12):1427–1436. https://doi.org/10.1007/s007020070006

    Article  CAS  Google Scholar 

  21. Furushima H, Shimohata T, Nakayama H, Ozawa T, Chinushi M, Aizawa Y, Nishizawa M (2012) Significance and usefulness of heart rate variability in patients with multiple system atrophy. Mov Disord 27(4):570–574. https://doi.org/10.1002/mds.24929

    Article  PubMed  Google Scholar 

  22. Warmuth-Metz M, Naumann M, Csoti I, Solymosi L (2001) Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy. Arch Neurol 58(7):1076–1079. https://doi.org/10.1001/archneur.58.7.1076

    Article  CAS  PubMed  Google Scholar 

  23. Wenning GK, Geser F, Krismer F, Seppi K, Duerr S, Boesch S, Kollensperger M, Goebel G, Pfeiffer KP, Barone P, Pellecchia MT, Quinn NP, Koukouni V, Fowler CJ, Schrag A, Mathias CJ, Giladi N, Gurevich T, Dupont E, Ostergaard K, Nilsson CF, Widner H, Oertel W, Eggert KM, Albanese A, del Sorbo F, Tolosa E, Cardozo A, Deuschl G, Hellriegel H, Klockgether T, Dodel R, Sampaio C, Coelho M, Djaldetti R, Melamed E, Gasser T, Kamm C, Meco G, Colosimo C, Rascol O, Meissner WG, Tison F, Poewe W (2013) The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol 12(3):264–274. https://doi.org/10.1016/s1474-4422(12)70327-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Low PA, Reich SG, Jankovic J, Shults CW, Stern MB, Novak P, Tanner CM, Gilman S, Marshall FJ, Wooten F, Racette B, Chelimsky T, Singer W, Sletten DM, Sandroni P, Mandrekar J (2015) Natural history of multiple system atrophy in the USA: a prospective cohort study. Lancet Neurol 14(7):710–719. https://doi.org/10.1016/s1474-4422(15)00058-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI, grant numbers JP16K09713 and JP18K15415; and grants from the Ministry of Health, Labor, and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomohiko Nakamura or Masahisa Katsuno.

Ethics declarations

Compliance with ethical standards

This study was conducted according to the Ethical Guidelines for Medical and Health Research Involving Human Subjects endorsed by the Japanese government and the guidelines laid down by the Helsinki Declaraton of 1964, as revised in 2013, and was approved by the Ethics Review Committee at Nagoya University. Informed consent was obtained from all participants prior to the study.

Conflict of interest

None of the authors report any financial interests or potential conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, M., Nakamura, T., Hirayama, M. et al. Relationship between cardiac parasympathetic dysfunction and the anteroposterior diameter of the medulla oblongata in multiple system atrophy. Clin Auton Res 30, 231–238 (2020). https://doi.org/10.1007/s10286-020-00675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-020-00675-4

Keywords

Navigation