A practical guide to active stand testing and analysis using continuous beat-to-beat non-invasive blood pressure monitoring

Abstract

Purpose

The average adult stands approximately 50–60 times per day. Cardiovascular responses evoked during the first 3 min of active standing provide a simple means to clinically assess short-term neural and cardiovascular function across the lifespan. Clinically, this response is used to identify the haemodynamic correlates of patient symptoms and attributable causes of (pre-)syncope, and to detect autonomic dysfunction, variants of orthostatic hypotension, postural orthostatic tachycardia syndrome and orthostatic hypertension.

Methods

This paper provides a set of experience/expertise-based recommendations detailing current state-of-the-art measurement and analysis approaches for the active stand test, focusing on beat-to-beat BP technologies. This information is targeted at those interested in performing and interpreting the active stand test to current international standards.

Results

This paper presents a practical step-by-step guide on (1) how to perform active stand measurements using beat-to-beat continuous blood pressure measurement technologies, (2) how to conduct an analysis of the active stand response and (3) how to identify the spectrum of abnormal blood pressure and heart rate responses which are of clinical interest.

Conclusion

Impairments in neurocardiovascular control are an attributable cause of falls and syncope across the lifespan. The simple active stand test provides the clinician with a powerful tool for assessing individuals at risk of such common disorders. However, its simplicity belies the complexity of its interpretation. Care must therefore be taken in administering and interpreting the test in order to maximise its clinical benefit and minimise its misinterpretation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Smith L, Hamer M, Ucci M, Marmot A, Gardner B, Sawyer A et al (2015) Weekday and weekend patterns of objectively measured sitting, standing, and stepping in a sample of office-based workers: the active buildings study. BMC Public Health 17(15):9

    Article  Google Scholar 

  2. 2.

    Dall PM, Kerr A (2010) Frequency of the sit to stand task: an observational study of free-living adults. Appl Ergon 41(1):58–61

    Article  PubMed  Google Scholar 

  3. 3.

    van Wijnen VK, Finucane C, Harms MPM, Nolan H, Freeman RL, Westerhof BE et al (2017) Noninvasive beat-to-beat finger arterial pressure monitoring during orthostasis: a comprehensive review of normal and abnormal responses at different ages. J Intern Med 282(6):468–483

    Article  PubMed  Google Scholar 

  4. 4.

    Brignole M, Moya A, Lange D, Deharo J-C, Elliott PM et al (2018) 2018 ESC guidelines for the diagnosis and management of syncope. Eur Heart J 39(21):1883–1948

    Article  PubMed  Google Scholar 

  5. 5.

    Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I et al (2011) Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res 21(2):69–72

    Article  PubMed  Google Scholar 

  6. 6.

    Wieling W, Karemaker JM (2013) Measurement of heart rate and blood pressure to evaluate disturbances in neurocardiovascular control. In: Mathias CJ, Bannister SR (eds) Autonomic failure, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  7. 7.

    Finucane C, O’Connell MD, Fan CW, Savva GM, Soraghan CJ, Nolan H et al (2014) Age related normative changes in phasic orthostatic blood pressure in a large population study: findings from The Irish Longitudinal Study on Ageing (TILDA). Circulation 130(20):1780–1789

    Article  PubMed  Google Scholar 

  8. 8.

    Fessel J, Robertson D (2006) Orthostatic hypertension: when pressor reflexes overcompensate. Nat Rev Nephrol 2(8):424–431

    Article  Google Scholar 

  9. 9.

    Kario K, Eguchi K, Hoshide S, Hoshide Y, Umeda Y, Mitsuhashi T et al (2002) U-curve relationship between orthostatic blood pressure change and silent cerebrovascular disease in elderly hypertensives: orthostatic hypertension as a new cardiovascular risk factor. J Am Coll Cardiol 40(1):133–141

    Article  PubMed  Google Scholar 

  10. 10.

    Fedorowski A, Ostling G, Persson M, Struck J, Engström G, Nilsson PM et al (2012) Orthostatic blood pressure response, carotid intima-media thickness, and plasma fibrinogen in older nondiabetic adults. J Hypertens 30(3):522–529

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Smit AAJ, Halliwill JR, Low PA, Wieling W (2017) Pathophysiological basis of orthostatic hypotension in autonomic failure. J Physiol 519(1):1–10

    Article  Google Scholar 

  12. 12.

    Low PA, Sandroni P, Joyner M, Shen W-K (2009) Postural Tachycardia Syndrome (POTS). J Cardiovasc Electrophysiol 20(3):352–358

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Finucane C, O’Connell MDL, Donoghue O, Richardson K, Savva GM, Kenny RA (2017) Impaired orthostatic blood pressure recovery is associated with unexplained and injurious falls. J Am Geriatr Soc 65(3):474–482

    Article  PubMed  Google Scholar 

  14. 14.

    Shaw BH, Claydon VE (2014) The relationship between orthostatic hypotension and falling in older adults. Clin Auton Res 24(1):3–13

    Article  PubMed  Google Scholar 

  15. 15.

    Juraschek SP, Daya N, Appel LJ, Miller ER, Windham BG, Pompeii L et al (2017) Orthostatic hypotension in middle-age and risk of falls. Am J Hypertens 30(2):188–195

    Article  PubMed  Google Scholar 

  16. 16.

    Juraschek SP, Daya N, Rawlings AM, Appel LJ, Miller ER, Windham BG et al (2017) Comparison of early versus late orthostatic hypotension assessment times in middle-age adults. JAMA Intern Med 177(9):1316–1323

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Briggs R, Kenny RA, Kennelly SP (2017) Does baseline hypotension predict incident depression in a cohort of community-dwelling older people? Data from the Irish Longitudinal Study on Ageing (TILDA). Age Ageing 46(4):648–653

    Article  PubMed  Google Scholar 

  18. 18.

    Briggs R, Carey D, Kennelly SP, Kenny RA (2018) Longitudinal association between orthostatic hypotension at 30 seconds post-standing and late-life depression. Hypertension 71:946–954

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Frewen J, Savva GM, Boyle G, Finucane C, Kenny RA (2014) Cognitive performance in orthostatic hypotension: findings from a nationally representative sample. J Am Geriatr Soc 62(1):117–122

    Article  PubMed  Google Scholar 

  20. 20.

    O’Hare C, Kenny R-A, Aizenstein H, Boudreau R, Newman A, Launer L et al (2017) Cognitive status, gray matter atrophy, and lower orthostatic blood pressure in older adults. J Alzheimers Dis 57(4):1239–1250

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Frewen J, Finucane C, Savva GM, Boyle G, Kenny RA (2014) Orthostatic hypotension is associated with lower cognitive performance in adults aged 50 plus with supine hypertension. J Gerontol Ser A 69(7):878–885

    Article  Google Scholar 

  22. 22.

    Hayakawa T, McGarrigle CA, Coen RF, Soraghan CJ, Foran T, Lawlor BA et al (2015) Orthostatic blood pressure behavior in people with mild cognitive impairment predicts conversion to dementia. J Am Geriatr Soc 63(9):1868–1873

    Article  PubMed  Google Scholar 

  23. 23.

    Holm H, Nägga K, Nilsson ED, Melander O, Minthon L, Bachus E et al (2017) Longitudinal and postural changes of blood pressure predict dementia: the Malmö Preventive Project. Eur J Epidemiol 32(4):327–336

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fedorowski A, Engström G, Hedblad B, Melander O (2010) Orthostatic hypotension predicts incidence of heart failure: the Malmö preventive project. Am J Hypertens 23(11):1209–1215

    Article  PubMed  Google Scholar 

  25. 25.

    Fedorowski A, Stavenow L, Hedblad B, Berglund G, Nilsson PM, Melander O (2010) Orthostatic hypotension predicts all-cause mortality and coronary events in middle-aged individuals (The Malmö Preventive Project). Eur Heart J 31(1):85–91

    Article  PubMed  Google Scholar 

  26. 26.

    McCrory C, Berkman L, Nolan H, O’Leary N, Foley M, Kenny RA (2016) Speed of heart rate recovery in response to orthostatic challenge: a strong risk marker of mortality. Circ Res 119(5):666–675

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Lagro J, Schoon Y, Heerts I, Meel-van den Abeelen ASS, Schalk B, Wieling W, et al. Impaired systolic blood pressure recovery directly after standing predicts mortality in older falls clinic patients. J Gerontol A Biol Sci Med Sci. 2014;69(4):471–8

  28. 28.

    Chung E, Chen G, Alexander B, Cannesson M (2013) Non-invasive continuous blood pressure monitoring: a review of current applications. Front Med 7(1):91–101

    Article  PubMed  Google Scholar 

  29. 29.

    Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE (2012) Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput 26(4):267–278

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Romero-Ortuno R, Cogan L, Foran T, Kenny RA, Fan CW (2011) Continuous noninvasive orthostatic blood pressure measurements and their relationship with orthostatic intolerance, falls, and frailty in older people. J Am Geriatr Soc 59(4):655–665

    Article  PubMed  Google Scholar 

  31. 31.

    Finucane C (2008) Identifying blood pressure response subtypes following orthostasis using pattern recognition techniques. http://www.tara.tcd.ie/handle/2262/66730. Accessed 3 Jul 2018

  32. 32.

    Wieling W, Krediet CTP, van Dijk N, Linzer M, Tschakovsky ME (2007) Initial orthostatic hypotension: review of a forgotten condition. Clin Sci Lond Engl 1979. 112(3):157–65

  33. 33.

    Finucane C, Savva GM, Kenny RA (2017) Reliability of orthostatic beat-to-beat blood pressure tests: implications for population and clinical studies. Clin Auton Res 27(1):31–39

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Lipsitz LA, Storch HA, Minaker KL, Rowe JW (1985) Intra-individual variability in postural blood pressure in the elderly. Clin Sci 69(3):337–341

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Imholz BP, Wieling W, van Montfrans GA, Wesseling KH (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38(3):605–616

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Edwards Lifesciences BMEYE (2008) Nexfin HD Operator’s manual. Edwards Lifesciences BMEYE, Amsterdam

    Google Scholar 

  37. 37.

    Bartels SA, Stok WJ, Bezemer R, Boksem RJ, van Goudoever J, Cherpanath TGV et al (2011) Noninvasive cardiac output monitoring during exercise testing: Nexfin pulse contour analysis compared to an inert gas rebreathing method and respired gas analysis. J Clin Monit Comput 25(5):315–321

    Article  PubMed  Google Scholar 

  38. 38.

    Wesseling KH, De Wit B, Van der Hoeven GMA, Van Goudoever J, Settels JJ (1995) Physiocal, calibrating finger vascular physiology for Finapres. Homeostasis 36:67–82

    Google Scholar 

  39. 39.

    Fortin J, Marte W, Grüllenberger R, Hacker A, Habenbacher W, Heller A et al (2006) Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Comput Biol Med 36(9):941–957

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Martina JR, Westerhof BE, Van Goudoever J, De Jonge N, Van Lieshout JJ, Lahpor JR et al (2010) Noninvasive blood pressure measurement by the Nexfin monitor during reduced arterial pulsatility: a feasibility study. ASAIO J 56(3):221

    Article  PubMed  Google Scholar 

  41. 41.

    Rongen GA, Bos WJW, Lenders JWM, Montfrans V, A G, Lier V et al (1995) Comparison of intrabrachial and finger blood pressure in healthy elderly volunteers. Am J Hypertens 8(3):237–48

  42. 42.

    Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol Bethesda Md 1985 74(5):2566–73

  43. 43.

    Bogert LWJ, Wesseling KH, Schraa O, Van Lieshout EJ, de Mol BA, van Goudoever J et al (2010) Pulse contour cardiac output derived from non-invasive arterial pressure in cardiovascular disease. Anaesthesia 65(11):1119–25

  44. 44.

    Ameloot K, Palmers P-J, Malbrain MLNG (2015) The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care 21(3):232–239

    Article  Google Scholar 

  45. 45.

    Truijen J, Westerhof BE, Kim Y-S, Stok WJ, de Mol BA, Preckel B et al (2018) The effect of hemodynamic and peripheral vascular variability on cardiac output monitoring: thermodilution and non-invasive pulse contour cardiac output during cardiothoracic surgery. Anaesthesia 73(12):1489–1499

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    The Irish Longitudinal Study on Ageing (2013) TILDA Wave 3 health assessment standard operating procedure. Unpublished

  47. 47.

    Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society (2011) Summary of the Updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J Am Geriatr Soc 59(1):148–57

  48. 48.

    Bernardi L, Spallone V, Stevens M, Hilsted J, Frontoni S, Pop-Busui R et al (2015) Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes Metab Res Rev 27(7):654–664

    Article  Google Scholar 

  49. 49.

    Wieling W, Colman N, Krediet CTP, Freeman R (2004) Nonpharmacological treatment of reflex syncope. Clin Auton Res 14(Suppl 1):62–70

    Article  PubMed  Google Scholar 

  50. 50.

    Groothuis JT, van Dijk N, Ter Woerds W, Wieling W, Hopman MTE (2007) Leg crossing with muscle tensing, a physical counter-manoeuvre to prevent syncope, enhances leg blood flow. Clin Sci Lond Engl 1979 112(3):193–201

  51. 51.

    Sprangers RL, Veerman DP, Karemaker JM, Wieling W (1991) Initial circulatory responses to changes in posture: influence of the angle and speed of tilt. Clin Physiol Oxf Engl 11(3):211–220

    Article  CAS  Google Scholar 

  52. 52.

    Jansen RWMM (1995) Postprandial hypotension: epidemiology, pathophysiology, and clinical management. Ann Intern Med 122(4):286

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Fan CW, Savva GM, Finucane C, Cronin H, O’Regan C, Kenny RA et al (2012) Factors affecting continuous beat-to-beat orthostatic blood pressure response in community-dwelling older adults. Blood Press Monit 17(4):160

    Article  PubMed  Google Scholar 

  54. 54.

    Hayano J, Sakakibara Y, Yamada M, Kamiya T, Fujinami T, Yokoyama K et al (1990) Diurnal variations in vagal and sympathetic cardiac control. Am J Physiol Heart Circ Physiol 258(3):H642–H646

    Article  CAS  Google Scholar 

  55. 55.

    Pal MD, Benarroch EE (eds.) (2008) Clinical autonomic disorders, 3rd edition. LWW, Philadelphia

  56. 56.

    van de Borne P, Mark AL, Montano N, Mion D, Somers VK (1997) Effects of alcohol on sympathetic activity, hemodynamics, and chemoreflex sensitivity. Hypertension 29(6):1278–1283

    Article  PubMed  Google Scholar 

  57. 57.

    Goldsmith RL, Bloomfield DM, Rosenwinkel ET (2000) Exercise and autonomic function. Coron Artery Dis 11(2):129

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Halliwill JR, Taylor JA, Eckberg DL (1996) Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol 495(Pt 1):279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Frith J, Rn PR, Newton JL (2015) Length of time required to achieve a stable baseline blood pressure in the diagnosis of orthostatic hypotension. J Am Geriatr Soc 61(8):1414–1415

    Article  Google Scholar 

  60. 60.

    Mader SL, Palmer RM, Rubenstein LZ (1989) Effect of timing and number of baseline blood pressure determinations on postural blood pressure response. J Am Geriatr Soc 37(5):444–446

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Ewing DJ, Neilson JM, Shapiro CM, Stewart JA, Reid W (1991) Twenty four hour heart rate variability: effects of posture, sleep, and time of day in healthy controls and comparison with bedside tests of autonomic function in diabetic patients. Heart 65(5):239–244

    Article  CAS  Google Scholar 

  62. 62.

    Westerhof BE, Gisolf J, Stok WJ, Wesseling KH, Karemaker JM (2004) Time-domain cross-correlation baroreflex sensitivity: performance on the EUROBAVAR data set. J Hypertens 22(7):1371

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    FMS, Finapres Medical Systems BV. Finometer User Guide. Arnheim, The Netherlands; 2002

  64. 64.

    Soraghan CJ, Fan CW, Hayakawa T, Cronin H, Foran T, Boyle G et al (2014) TILDA Signal Processing Framework (SPF) for the analysis of BP responses to standing in epidemiological and clinical studies. In: IEEE-EMBS international conference on biomedical and health informatics (BHI), pp 793–6

  65. 65.

    van der Velde N, van den Meiracker AH, Stricker BHC, van der Cammen TJM (2007) Measuring orthostatic hypotension with the Finometer device: is a blood pressure drop of one heartbeat clinically relevant? Blood Press Monit 12(3):167–171

    Article  PubMed  Google Scholar 

  66. 66.

    Heldt T, Shim EB, Kamm RD, Mark RG (2002) Computational modeling of cardiovascular response to orthostatic stress. J Appl Physiol Bethesda Md 1985 92(3):1239–1254

  67. 67.

    Berkelmans GFN, Kuipers S, Westerhof BE, Spoelstra-de Man AME, Smulders YM (2018) Comparing volume-clamp method and intra-arterial blood pressure measurements in patients with atrial fibrillation admitted to the intensive or medium care unit. J Clin Monit Comput 32(3):439–446

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Chui CK, Chen G (2012) Signal processing and systems theory: selected topics. Softcover reprint of the original 1st ed. 1992 edn. Springer, Berlin

  69. 69.

    Julien C (2006) The enigma of Mayer waves: facts and models. Cardiovasc Res 70(1):12–21

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Norcliffe-Kaufmann L, Kaufmann H, Palma J-A, Shibao CA, Biaggioni I, Peltier AC et al (2018) Orthostatic heart rate changes in patients with autonomic failure caused by neurodegenerative synucleinopathies. Ann Neurol 83(3):522–531

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

BEW was supported by NWO-VICI (918.16.610).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ciarán Finucane.

Ethics declarations

Conflict of interest

BEW previously worked for Edwards Lifesciences, Amsterdam, The Netherlands.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 67 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finucane, C., van Wijnen, V.K., Fan, C.W. et al. A practical guide to active stand testing and analysis using continuous beat-to-beat non-invasive blood pressure monitoring. Clin Auton Res 29, 427–441 (2019). https://doi.org/10.1007/s10286-019-00606-y

Download citation

Keywords

  • Active stand
  • Continuous blood pressure
  • Orthostatic hypotension
  • Falls and syncope
  • Autonomic dysfunction