Abstract
The production of emotional tears appears to be uniquely present in Homo sapiens. Despite the ubiquity of this human behavior, research is only just beginning to uncover the neurobiologic underpinnings of human emotional crying. In this article, we review the current state of the literature investigating the neurobiologic aspects of this uniquely human behavior, including the neuroanatomical, neurochemical, and psychophysiologic findings. To set the context for this review, we first provide a brief overview of the evolutionary background and functions of tearful crying. Despite an accumulating understanding of the neurobiology of human emotional crying, the primary sources of information are currently from animal studies and observations in neurologic patients suffering from pathologic crying. Currently, most of the research on the neurobiology of crying in humans has focused on autonomic physiologic processes underlying tearful crying, which may yield essential clues regarding the neural substrates of the production of crying behavior and its effects on the crier. Further challenges in elucidating the neurobiology of crying involve the complexity of crying behavior, which includes vocalizations, tear production, the involvement of facial musculature, subjective emotional experience, emotion regulatory behaviors, and social behaviors. Future research is needed to comprehensively characterize the neurobiology of this intriguing and complex human behavior.
This is a preview of subscription content, access via your institution.

References
Gračanin A, Bylsma LM, Vingerhoets AJJM (2018) Why only humans shed emotional tears: evolutionary and cultural perspectives. Hum Nat. https://doi.org/10.1007/s12110-018-9312-8
Newman JD (2007) Neural circuits underlying crying and cry responding in mammals. Behav Brain Res 182:155–165
Vingerhoets AJJM, Bylsma LM (2016) The riddle of human emotional crying: a challenge for emotion researchers. Emot Rev 8:207–217
Vingerhoets AJJM (2013) Why only humans weep: unravelling the mysteries of tears. Oxford University Press, Oxford
Bylsma LM, Vingerhoets AJJM, Rottenberg J (2008) When is crying cathartic? An international study. J Social Clin Psychol 27:1165–1187
Rottenberg J, Bylsma LM, Vingerhoets AJJM (2008) Is crying beneficial? Curr Dir Psychol Sci 17:400–404
Gračanin A, Vingerhoets AJJM, Kardum I, Zupčić M, Šantek M, Šimić M (2015) Why crying does and sometimes does not seem to alleviate mood: a quasi-experimental study. Motiv Emot 39:953–960
Jürgens U (2009) The neural control of vocalization in mammals: a review. J Voice 23:1–10
Morecraft RJ, Stilwell-Morecraft KS, Rossing WR (2004) The motor cortex and facial expression: new insights from neuroscience. Neurology 10:235–249
Dartt DA (2009) Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res 28:155–177
Hodges RR, Dartt DA (2003) Regulatory pathways in lacrimal gland epithelium. Int Rev Cytol 231:129–196
Van Haeringen N (2001) The (neuro)anatomy of the lacrimal system and the biological aspects of crying. In: Vingerhoets AJJM, Cornelius RR (eds) Adult crying: a biopsychosocial approach. Routledge, Hove, pp 19–36
Benarroch EE (1993) The Central Autonomic Network: functional organization, dysfunction, and perspective. Mayo Clin Proc 68:988–1001
Kardon R (2005) Anatomy and physiology of the autonomic nervous system. In: Miller NR, Newman NJ, Biousse V, Kerrison JB (eds) Walsh and Hoyt’s Clinical Neuro-ophthalmology, volume 1, 6th edn. Lippincott Wiliams and Wilkins, Philadelphia, pp 647–671
Mendoza-Santiesteban CE, Palma J, Norcliffe-Kaufmann L, Kaufmann H (2017) Familial dysautonomia: a disease with hidden tears. J Neurol 264:1290–1291
Hof PR (2011) Von Economo Neurons in FD. In: 2011 International Familial Dysautonomia Research Conference, New York
Allman JM, Tetreault NA, Hakeem AY et al (2011) The von Economo neurons in the frontoinsular and anterior cingulate cortex. Ann NY Acad Sci 1225:59–71
Seeley WW (2008) Selective functional, regional, and neuronal vulnerability in fronto-temporal dementia. Curr Opin Neurol 21:701–707
Porges SW (2001) The polyvagal theory: phylogenetic substrates of a social nervous system. Int J Psychophysiol 42:123–146
Porges SW (2007) The polyvagal perspective. Biol Psychol 74:116–143
Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn Sci 9:242–249
Appelhans BM, Luecken LJ (2006) Heart rate variability as an index of regulated emotional responding. Rev Gen Psychol 10:229–240
Vasilev CA, Crowell SE, Beauchaine TP, Mead HK, Gatzke-Kopp LM (2009) Correspondence between physiological and self-report measures of emotion dysregulation: a longitudinal investigation of youth with and without psychopathology. J Child Psychol Psychiatry 50:1357–1364
Bylsma LM, Salomon K, Taylor-Clift A, Morris BH, Rottenberg J (2014) RSA reactivity in current and remitted major depressive disorder. Psychosom Med 76:66–73
Holzman JB, Bridgett DJ (2017) Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: a meta-analytic review. Neurosci Biobehav Rev 74:233–255
Porges SW, Lewis GF (2010) The polyvagal hypothesis: common mechanisms mediating autonomic regulation, vocalizations and listening. In: Brudzynski SM (ed) Handbook of mammalian vocalization: an integrative neuroscience approach. Elsevier, Amsterdam, pp 255–264
Kraemer DL, Hastrup JL (1988) Crying in adults: self-control and autonomic correlates. J Soc Clin Psychol 6:53–68
Gross JJ, Fredrickson BL, Levenson RW (1994) The psychophysiology of crying. Psychophysiology 31:460–468
Sakuragi S, Sugiyama Y, Takeuchi K (2002) Effects of laughing and weeping on mood and heart rate variability. J Physiol Anthropol Appl Hum Sci 21:159–165
Rottenberg J, Gross JJ, Wilhelm FH, Najmi S, Gotlib IH (2002) Crying threshold and intensity in major depressive disorder. J Abnorm Psychol 111:302–312
Rottenberg J, Wilhelm FH, Gross JJ, Gotlib IH (2003) Vagal rebound during resolution of tearful crying among depressed and nondepressed individuals. Psychophysiology 40:1–6
Hendriks MCP, Rottenberg J, Vingerhoets AJJM (2007) Can the distress signal and arousal-reduction view be reconciled? Evidence from the cardiovascular system. Emotion 7:458–463
Wassiliwizky E, Jacobsen T, Heinrich J, Schneiderbauer M, Menninghaus W (2017) Tears falling on goosebumps: co-occurrence of emotional lacrimation and emotional piloerection indicates a psychophysiological climax in emotional arousal. Front Psychol. https://doi.org/10.3389/fpsyg.2017.00041
Mori K, Iwanaga M (2017) Two types of peak emotional responses to music: the psychophysiology of chills and tears. Sci Rep. https://doi.org/10.1038/srep46063
De Morree HM, Szabó BM, Rutten GJ, Kop WJ (2013) Central nervous system involvement in the autonomic responses to psychological distress. Neth Heart J 21:64–69
Scott JP (1974) Effects of psychotropic drugs on separation distress in dogs. In Proceedings of IX Congress of the Collegium International Neuropsychopharmacologicum. Int Congr Ser–Excerpta Med 359:735–745
Gruber-Dujardin E (2010) Role of the periaqueductal gray in expressing vocalization. In: Brudzynski SM (ed) Handbook of mammalian vocalization: an integrative neuroscience approach. Elsevier, Amsterdam, pp 313–327
Zhang SP, Davis PJ, Bandler R, Carrive P (1994) Brain stem integration of vocalization: the role of the midbrain periaqueductal gray. J Neurophysiol 72:1337–1356
Jürgens U (2002) Neural pathways underlying vocal control. Neurosci Biobehav Rev 26:235–258
Schulz GM, Varga M, Jeffires K, Ludlow CL, Braun AR (2005) Functional neuroanatomy of human vocalization: an H215O PET study. Cereb Cortex 15:1835–1847
Panksepp J (2011) The neurobiology of social loss in animals: some keys to the puzzle of psychic pain in humans. In: Jensen-Campbell LA, MacDonald G (eds) Social pain: neuropsychological and health implications of loss and exclusion. American Psychological Association, Washington, pp 11–52
Posse S, Fitzgerald D, Gao K, Habel U, Rosenberg D, Moore GJ, Schneider F (2003) Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. NeuroImage 18:760–768
Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion: activation studies in PET and fMRI. NeuroImage 16:331–348
Arciniegas DB, Lauterbach EC, Anderson KE et al (2005) The differential diagnosis of pseudobulbar affect (PBA): distinguishing PBA among disorders of mood and affect. Proceedings of a roundtable meeting. CNS Spectr 10:1–14
Miller A, Pratt H, Schiffer RB (2011) Pseudobulbar affect: the spectrum of clinical presentations, etiologies, and treatments. Expert Rev Neurother 11:1077–1088
Rabins PV, Arciniegas DB (2007) Pathophysiology of involuntary emotional expression disorder. CNS Spectr 12(4 suppl.):17–22
Wortzel HS, Oster TJ, Anderson CA, Arciniegas DB (2008) Pathological laughing and crying: epidemiology, pathophysiology, and treatment. CNS Drugs 22:531–545
Parvizi J, Coburn KL, Shillcutt SD, Coffey CE, Lauterbach EC, Mendez MF (2009) Neuroanatomy of pathological laughing and crying: a report of the American Neuropsychiatric Association Committee on Research. J Neuropsychiatry Clin Neurosci 21:75–87
Sato-Suzuki I, Fumoto M, Seki Y et al (2007) Activation of the medial prefrontal cortex during crying with emotional tears: near-infrared spectroscopy study. Auton Neurosci 135:128–137
Znoj H (1997) When remembering the lost spouse hurts too much: first results with a newly developed observer measure for tears and crying related coping behavior. In: Vingerhoets AJJM, van Bussel FJ, Boelhouwer AJW (eds) The (non)expression of emotions in health and disease. Tilburg University Press, Tilburg, pp 337–352
Thayer JF, Lane RD (2009) Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 33:81–88
Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93
Panksepp J, Meeker R, Bean NJ (1980) The neurochemical control of crying. Pharmacol Biochem Behav 12:437–443
Panksepp J (2010) Emotional causes and consequences of social-affective vocalization. In: Brudzynski SM (ed) Handbook of mammalian vocalization: an integrative neuroscience approach. Elsevier, Amsterdam, pp 201–208
Harris JC, Newman JD (1987) Mediation of separation distress by α2-adrenergic mechanisms in a non-human primate. Brain Res 410:353–356
Bowlby J (1969) Attachment. Basic Books, New York
Nelson JK (2005) Seeing through tears: crying and attachment. Routledge, New York
Snowdon CT, Ziegler TE (2004) Reproductive hormones. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology, 2nd edn. Cambridge University Press, Cambridge, pp 368–396
Insel TR, Young LJ (2001) The neurobiology of attachment. Nat Rev Neurosci 2:129–136
Panksepp J (1998) Affective neuroscience: the foundations of human and animal emotions. Oxford University Press, New York
Gračanin A, Bylsma LM, Vingerhoets AJJM (2014) Is crying a self-soothing behaviour? Front Psychol. https://doi.org/10.3389/fpsyg.2014.00502
Hackett ML, Yang M, Anderson CS, Horrocks JA, House A (2010) Pharmaceutical interventions for emotionalism after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003690.pub3 (Art. No.: CD003690)
Van der Veen FM, Jorritsma J, Krijger C, Vingerhoets AJJM (2012) Paroxetine reduces crying in young women watching emotional movies. Psychopharmacology 220:303–308
Van Tilburg MAL, Unterberg M, Vingerhoets AJJM (2002) Crying during adolescence: the role of gender, menarche, and empathy. Br J Dev Psychol 20:77–87
Frey WH (1985) The mystery of tears. Winston Press, Minneapolis
Eugster A, Horsten M, Vingerhoets AJJM (2001) Menstrual cycle, pregnancy, and crying. In: Vingerhoets AJJM, Cornelius RR (eds) Adult crying: a biopsychosocial approach. Brunner-Routledge, Hove, pp 177–198
Acknowledgements
The authors express their gratitude for the input of Ton van Boxtel and Kees Brunia on earlier versions of the figure. The final figure was drawn by Rogier Trompert. The authors also appreciate the feedback from two anonymous reviewers for their helpful feedback on an earlier version of this manuscript. The first author, Lauren M. Bylsma, is supported by an NIMH K01 Award (MH104325).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
On behalf of all authors, the corresponding author states there are no conflicts of interest.
Rights and permissions
About this article
Cite this article
Bylsma, L.M., Gračanin, A. & Vingerhoets, A.J.J.M. The neurobiology of human crying. Clin Auton Res 29, 63–73 (2019). https://doi.org/10.1007/s10286-018-0526-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10286-018-0526-y
Keywords
- Crying
- Tears
- Social
- Emotion
- Neurobiology
- Physiology