Advertisement

Clinical Autonomic Research

, Volume 28, Issue 3, pp 289–299 | Cite as

Neural pathways involved in infection-induced inflammation: recent insights and clinical implications

  • Marion Griton
  • Jan Pieter Konsman
Review

Abstract

Although the immune and nervous systems have long been considered independent biological systems, they turn out to mingle and interact extensively. The present review summarizes recent insights into the neural pathways activated by and involved in infection-induced inflammation and discusses potential clinical applications. The simplest activation concerns a reflex action within C-fibers leading to neurogenic inflammation. Low concentrations of pro-inflammatory cytokines or bacterial fragments may also act on these afferent nerve fibers to signal the central nervous system and bring about early fever, hyperalgesia and sickness behavior. In the brain, the preoptic area and the paraventricular hypothalamus are part of a neuronal network mediating sympathetic activation underlying fever while brainstem circuits play a role in the reduction of food intake after systemic exposure to bacterial fragments. A vagally-mediated anti-inflammatory reflex mechanism has been proposed and, in turn, questioned because the major immune organs driving inflammation, such as the spleen, are not innervated by vagal efferent fibers. On the contrary, sympathetic nerves do innervate these organs and modulate immune cell responses, production of inflammatory mediators and bacterial dissemination. Noradrenaline, which is both released by these fibers and often administered during sepsis, along with adrenaline, may exert pro-inflammatory actions through the stimulation of β1 adrenergic receptors, as antagonists of this receptor have been shown to exert anti-inflammatory effects in experimental sepsis.

Keywords

Autonomic nervous system Catecholamines Immune organs Sepsis Vagus nerve 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810.  https://doi.org/10.1001/jama.2016.0287 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Konsman JP, Parnet P, Dantzer R (2002) Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci 25:154–159PubMedGoogle Scholar
  3. 3.
    Furness JB (2006) The organisation of the autonomic nervous system: peripheral connections. Auton Neurosci Basic Clin 130:1–5.  https://doi.org/10.1016/j.autneu.2006.05.003 Google Scholar
  4. 4.
    Gibbins I (2013) Functional organization of autonomic neural pathways. Organogenesis 9:169–175.  https://doi.org/10.4161/org.25126 PubMedPubMedCentralGoogle Scholar
  5. 5.
    McDonald DM, Bowden JJ, Baluk P, Bunnett NW (1996) Neurogenic inflammation. A model for studying efferent actions of sensory nerves. Adv Exp Med Biol 410:453–462PubMedGoogle Scholar
  6. 6.
    Holzer P (2007) Role of visceral afferent neurons in mucosal inflammation and defense. Curr Opin Pharmacol 7:563–569.  https://doi.org/10.1016/j.coph.2007.09.004 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Riley TP, Neal-McKinney JM, Buelow DR et al (2013) Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut. J Neuroimmunol 257:36–45.  https://doi.org/10.1016/j.jneuroim.2013.01.009 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Lai NY, Mills K, Chiu IM (2017) Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J Intern Med 282:5–23.  https://doi.org/10.1111/joim.12591 PubMedGoogle Scholar
  9. 9.
    Rolfe VE, Levin RJ (1999) Vagotomy inhibits the jejunal fluid secretion activated by luminal ileal Escherichia coli STa in the rat in vivo. Gut 44:615–619PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nzegwu HC, Levin RJ (1996) Luminal capsaicin inhibits fluid secretion induced by enterotoxin E. coli STa, but not by carbachol, in vivo in rat small and large intestine. Exp Physiol 81:313–315PubMedGoogle Scholar
  11. 11.
    Cruz MT, Murphy EC, Sahibzada N et al (2007) A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat. Am J Physiol Regul Integr Comp Physiol 292:R291–R307.  https://doi.org/10.1152/ajpregu.00863.2005 PubMedGoogle Scholar
  12. 12.
    Calatayud S, Barrachina MD, García-Zaragozá E et al (2001) Endotoxin inhibits gastric emptying in rats via a capsaicin-sensitive afferent pathway. Naunyn Schmiedebergs Arch Pharmacol 363:276–280PubMedGoogle Scholar
  13. 13.
    Bret-Dibat JL, Kent S, Couraud JY et al (1994) A behaviorally active dose of lipopolysaccharide increases sensory neuropeptides levels in mouse spinal cord. Neurosci Lett 173:205–209PubMedGoogle Scholar
  14. 14.
    Dogan MD, Patel S, Rudaya AY et al (2004) Lipopolysaccharide fever is initiated via a capsaicin-sensitive mechanism independent of the subtype-1 vanilloid receptor. Br J Pharmacol 143:1023–1032.  https://doi.org/10.1038/sj.bjp.0705977 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Fukuoka H, Kawatani M, Hisamitsu T, Takeshige C (1994) Cutaneous hyperalgesia induced by peripheral injection of interleukin-1 beta in the rat. Brain Res 657:133–140PubMedGoogle Scholar
  16. 16.
    Binshtok AM, Wang H, Zimmermann K et al (2008) Nociceptors are interleukin-1 beta sensors. J Neurosci 28:14062–14073.  https://doi.org/10.1523/JNEUROSCI.3795-08.2008 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Copray JC, Mantingh I, Brouwer N et al (2001) Expression of interleukin-1 beta in rat dorsal root ganglia. J Neuroimmunol 118:203–211PubMedGoogle Scholar
  18. 18.
    Barajon I, Serrao G, Arnaboldi F et al (2009) Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 57:1013–1023.  https://doi.org/10.1369/jhc.2009.953539 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Chiu IM, Heesters BA, Ghasemlou N et al (2013) Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501:52–57.  https://doi.org/10.1038/nature12479 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bluthé RM, Walter V, Parnet P et al (1994) Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. C R Acad Sci III 317:499–503PubMedGoogle Scholar
  21. 21.
    Bret-Dibat JL, Bluthé RM, Kent S et al (1995) Lipopolysaccharide and interleukin-1 depress food-motivated behavior in mice by a vagal-mediated mechanism. Brain Behav Immun 9:242–246PubMedGoogle Scholar
  22. 22.
    Goehler LE, Busch CR, Tartaglia N et al (1995) Blockade of cytokine induced conditioned taste aversion by subdiaphragmatic vagotomy: further evidence for vagal mediation of immune-brain communication. Neurosci Lett 185:163–166PubMedGoogle Scholar
  23. 23.
    Zielinski MR, Dunbrasky DL, Taishi P et al (2013) Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice. Sleep 36(1227–1238):1238A.  https://doi.org/10.5665/sleep.2892 CrossRefGoogle Scholar
  24. 24.
    Watkins LR, Wiertelak EP, Goehler LE et al (1994) Characterization of cytokine-induced hyperalgesia. Brain Res 654:15–26PubMedGoogle Scholar
  25. 25.
    Watkins LR, Wiertelak EP, Goehler LE et al (1994) Neurocircuitry of illness-induced hyperalgesia. Brain Res 639:283–299PubMedGoogle Scholar
  26. 26.
    Marvel FA, Chen C-C, Badr N et al (2004) Reversible inactivation of the dorsal vagal complex blocks lipopolysaccharide-induced social withdrawal and c-Fos expression in central autonomic nuclei. Brain Behav Immun 18:123–134.  https://doi.org/10.1016/j.bbi.2003.09.004 PubMedGoogle Scholar
  27. 27.
    Chaskiel L, Paul F, Gerstberger R et al (2016) Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration. Neuropharmacology 107:146–159.  https://doi.org/10.1016/j.neuropharm.2016.03.030 PubMedGoogle Scholar
  28. 28.
    Watkins LR, Goehler LE, Relton JK et al (1995) Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett 183:27–31PubMedGoogle Scholar
  29. 29.
    Sehic E, Blatteis CM (1996) Blockade of lipopolysaccharide-induced fever by subdiaphragmatic vagotomy in guinea pigs. Brain Res 726:160–166PubMedGoogle Scholar
  30. 30.
    Hansen MK, Krueger JM (1997) Subdiaphragmatic vagotomy blocks the sleep- and fever-promoting effects of interleukin-1beta. Am J Physiol 273:R1246–R1253PubMedGoogle Scholar
  31. 31.
    Opp MR, Toth LA (1998) Somnogenic and pyrogenic effects of interleukin-1beta and lipopolysaccharide in intact and vagotomized rats. Life Sci 62:923–936PubMedGoogle Scholar
  32. 32.
    Konsman JP, Luheshi GN, Bluthé RM, Dantzer R (2000) The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur J Neurosci 12:4434–4446PubMedGoogle Scholar
  33. 33.
    Luheshi GN, Bluthé RM, Rushforth D et al (2000) Vagotomy attenuates the behavioural but not the pyrogenic effects of interleukin-1 in rats. Auton Neurosci Basic Clin 85:127–132.  https://doi.org/10.1016/S1566-0702(00)00231-9 Google Scholar
  34. 34.
    Hansen MK, O’Connor KA, Goehler LE et al (2001) The contribution of the vagus nerve in interleukin-1beta-induced fever is dependent on dose. Am J Physiol Regul Integr Comp Physiol 280:R929–R934PubMedGoogle Scholar
  35. 35.
    Romanovsky AA, Simons CT, Székely M, Kulchitsky VA (1997) The vagus nerve in the thermoregulatory response to systemic inflammation. Am J Physiol 273:R407–R413PubMedGoogle Scholar
  36. 36.
    Niijima A (1996) The afferent discharges from sensors for interleukin 1 beta in the hepatoportal system in the anesthetized rat. J Auton Nerv Syst 61:287–291PubMedGoogle Scholar
  37. 37.
    Ek M, Kurosawa M, Lundeberg T, Ericsson A (1998) Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J Neurosci 18:9471–9479PubMedGoogle Scholar
  38. 38.
    Goehler LE, Relton JK, Dripps D et al (1997) Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull 43:357–364PubMedGoogle Scholar
  39. 39.
    Hosoi T, Okuma Y, Matsuda T, Nomura Y (2005) Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton Neurosci Basic Clin 120:104–107.  https://doi.org/10.1016/j.autneu.2004.11.012 Google Scholar
  40. 40.
    Niijima A, Hori T, Katafuchi T, Ichijo T (1995) The effect of interleukin-1 beta on the efferent activity of the vagus nerve to the thymus. J Auton Nerv Syst 54:137–144PubMedGoogle Scholar
  41. 41.
    Borovikova LV, Ivanova S, Zhang M et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462.  https://doi.org/10.1038/35013070 PubMedGoogle Scholar
  42. 42.
    Wang H, Yu M, Ochani M et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388.  https://doi.org/10.1038/nature01339 PubMedGoogle Scholar
  43. 43.
    Brandon KW, Rand MJ (1961) Acetylcholine and the sympathetic innervation of the spleen. J Physiol 157:18–32PubMedPubMedCentralGoogle Scholar
  44. 44.
    Leaders FE, Dayrit C (1965) The cholinergic component in the sympathetic innervation to the spleen. J Pharmacol Exp Ther 147:145–152PubMedGoogle Scholar
  45. 45.
    Huston JM, Ochani M, Rosas-Ballina M et al (2006) Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203:1623–1628.  https://doi.org/10.1084/jem.20052362 PubMedPubMedCentralGoogle Scholar
  46. 46.
    Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859.  https://doi.org/10.1038/nature01321 PubMedGoogle Scholar
  47. 47.
    Pavlov VA, Tracey KJ (2012) The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nat Rev Endocrinol 8:743–754.  https://doi.org/10.1038/nrendo.2012.189 PubMedPubMedCentralGoogle Scholar
  48. 48.
    Huston JM, Tracey KJ (2011) The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med 269:45–53.  https://doi.org/10.1111/j.1365-2796.2010.02321.x PubMedPubMedCentralGoogle Scholar
  49. 49.
    Andersson U, Tracey KJ (2012) Reflex principles of immunological homeostasis. Annu Rev Immunol 30:313–335.  https://doi.org/10.1146/annurev-immunol-020711-075015 PubMedPubMedCentralGoogle Scholar
  50. 50.
    Martelli D, McKinley MJ, McAllen RM (2014) The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci Basic Clin 182:65–69.  https://doi.org/10.1016/j.autneu.2013.12.007 Google Scholar
  51. 51.
    Martelli D, Yao ST, McKinley MJ, McAllen RM (2014) Reflex control of inflammation by sympathetic nerves, not the vagus. J Physiol 592:1677–1686.  https://doi.org/10.1113/jphysiol.2013.268573 PubMedPubMedCentralGoogle Scholar
  52. 52.
    Kessler W, Traeger T, Westerholt A et al (2006) The vagal nerve as a link between the nervous and immune system in the instance of polymicrobial sepsis. Langenbecks Arch Surg 391:83–87.  https://doi.org/10.1007/s00423-006-0031-y PubMedGoogle Scholar
  53. 53.
    Kessler W, Diedrich S, Menges P et al (2012) The role of the vagus nerve: modulation of the inflammatory reaction in murine polymicrobial sepsis. Mediators Inflamm 2012:467620.  https://doi.org/10.1155/2012/467620 PubMedPubMedCentralGoogle Scholar
  54. 54.
    Bonaz B, Sinniger V, Pellissier S (2017) Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J Intern Med 282:46–63.  https://doi.org/10.1111/joim.12611 PubMedGoogle Scholar
  55. 55.
    Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP (2017) Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med 282:64–75.  https://doi.org/10.1111/joim.12626 PubMedGoogle Scholar
  56. 56.
    Schäfer MK, Eiden LE, Weihe E (1998) Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience 84:361–376PubMedGoogle Scholar
  57. 57.
    Bulloch K, Pomerantz W (1984) Autonomic nervous system innervation of thymic-related lymphoid tissue in wildtype and nude mice. J Comp Neurol 228:57–68.  https://doi.org/10.1002/cne.902280107 PubMedGoogle Scholar
  58. 58.
    Bellinger DL, Lorton D, Hamill RW et al (1993) Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav Immun 7:191–204.  https://doi.org/10.1006/brbi.1993.1021 PubMedGoogle Scholar
  59. 59.
    Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21:736–745.  https://doi.org/10.1016/j.bbi.2007.03.008 PubMedPubMedCentralGoogle Scholar
  60. 60.
    Gautron L, Rutkowski JM, Burton MD et al (2013) Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J Comp Neurol 521:3741–3767.  https://doi.org/10.1002/cne.23376 PubMedPubMedCentralGoogle Scholar
  61. 61.
    Cailotto C, Gomez-Pinilla PJ, Costes LM et al (2014) Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS ONE 9:e87785.  https://doi.org/10.1371/journal.pone.0087785 PubMedPubMedCentralGoogle Scholar
  62. 62.
    Niijima A, Hori T, Aou S, Oomura Y (1991) The effects of interleukin-1 beta on the activity of adrenal, splenic and renal sympathetic nerves in the rat. J Auton Nerv Syst 36:183–192PubMedGoogle Scholar
  63. 63.
    MacNeil BJ, Jansen AH, Greenberg AH, Nance DM (1996) Activation and selectivity of splenic sympathetic nerve electrical activity response to bacterial endotoxin. Am J Physiol 270:R264–R270PubMedGoogle Scholar
  64. 64.
    Madden KS, Sanders VM, Felten DL (1995) Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 35:417–448.  https://doi.org/10.1146/annurev.pa.35.040195.002221 PubMedGoogle Scholar
  65. 65.
    Tang Y, Shankar R, Gamelli R, Jones S (1999) Dynamic norepinephrine alterations in bone marrow: evidence of functional innervation. J Neuroimmunol 96:182–189PubMedGoogle Scholar
  66. 66.
    Maestroni GJ (1995) Adrenergic regulation of haematopoiesis. Pharmacol Res 32:249–253PubMedGoogle Scholar
  67. 67.
    Leposavić G, Pilipović I, Radojević K et al (2008) Catecholamines as immunomodulators: a role for adrenoceptor-mediated mechanisms in fine tuning of T-cell development. Auton Neurosci Basic Clin 144:1–12.  https://doi.org/10.1016/j.autneu.2008.09.003 Google Scholar
  68. 68.
    Leposavić G, Pešić V, Stojić-Vukanić Z et al (2010) Age-associated plasticity of α1-adrenoceptor-mediated tuning of T-cell development. Exp Gerontol 45:918–935.  https://doi.org/10.1016/j.exger.2010.08.011 PubMedGoogle Scholar
  69. 69.
    Fuchs BA, Albright JW, Albright JF (1988) Beta-adrenergic receptors on murine lymphocytes: density varies with cell maturity and lymphocyte subtype and is decreased after antigen administration. Cell Immunol 114:231–245PubMedGoogle Scholar
  70. 70.
    Radojcic T, Baird S, Darko D et al (1991) Changes in beta-adrenergic receptor distribution on immunocytes during differentiation: an analysis of T cells and macrophages. J Neurosci Res 30:328–335.  https://doi.org/10.1002/jnr.490300208 PubMedGoogle Scholar
  71. 71.
    Singh U (1985) Effect of sympathectomy on the maturation of fetal thymocytes grown within the anterior eye chambers in mice. Adv Exp Med Biol 186:349–356PubMedGoogle Scholar
  72. 72.
    Durant S (1986) In vivo effects of catecholamines and glucocorticoids on mouse thymic cAMP content and thymolysis. Cell Immunol 102:136–143PubMedGoogle Scholar
  73. 73.
    Alaniz RC, Thomas SA, Perez-Melgosa M et al (1999) Dopamine beta-hydroxylase deficiency impairs cellular immunity. Proc Natl Acad Sci USA 96:2274–2278PubMedPubMedCentralGoogle Scholar
  74. 74.
    Galbiati F, Basso V, Cantuti L et al (2007) Autonomic denervation of lymphoid organs leads to epigenetic immune atrophy in a mouse model of Krabbe disease. J Neurosci 27:13730–13738.  https://doi.org/10.1523/JNEUROSCI.3379-07.2007 PubMedGoogle Scholar
  75. 75.
    Rauski A, Kosec D, Vidić-Danković B et al (2003) Effects of beta-adrenoceptor blockade on the phenotypic characteristics of thymocytes and peripheral blood lymphocytes. Int J Neurosci 113:1653–1673.  https://doi.org/10.1080/00207450390245216 PubMedGoogle Scholar
  76. 76.
    Rauski A, Kosec D, Vidić-Danković B et al (2003) Thymopoiesis following chronic blockade of beta-adrenoceptors. Immunopharmacol Immunotoxicol 25:513–528.  https://doi.org/10.1081/IPH-120026437 PubMedGoogle Scholar
  77. 77.
    Felten SY, Olschowka J (1987) Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp. J Neurosci Res 18:37–48.  https://doi.org/10.1002/jnr.490180108 PubMedGoogle Scholar
  78. 78.
    Bellinger DL, Millar BA, Perez S et al (2008) Sympathetic modulation of immunity: relevance to disease. Cell Immunol 252:27–56.  https://doi.org/10.1016/j.cellimm.2007.09.005 PubMedPubMedCentralGoogle Scholar
  79. 79.
    Kohm AP (1950) Sanders VM (1999) Suppression of antigen-specific Th2 cell-dependent IgM and IgG1 production following norepinephrine depletion in vivo. J Immunol Baltim Md 162:5299–5308Google Scholar
  80. 80.
    Giron LT, Crutcher KA, Davis JN (1980) Lymph nodes—a possible site for sympathetic neuronal regulation of immune responses. Ann Neurol 8:520–525.  https://doi.org/10.1002/ana.410080509 PubMedGoogle Scholar
  81. 81.
    Novotny GE, Kliche KO (1986) Innervation of lymph nodes: a combined silver impregnation and electron-microscopic study. Acta Anat (Basel) 127:243–248Google Scholar
  82. 82.
    Novotny GE (1988) Ultrastructural analysis of lymph node innervation in the rat. Acta Anat (Basel) 133:57–61Google Scholar
  83. 83.
    Madden KS, Moynihan JA, Brenner GJ et al (1994) Sympathetic nervous system modulation of the immune system. III. Alterations in T and B cell proliferation and differentiation in vitro following chemical sympathectomy. J Neuroimmunol 49:77–87PubMedGoogle Scholar
  84. 84.
    Carlson SL, Felten DL, Livnat S, Felten SY (1987) Alterations of monoamines in specific central autonomic nuclei following immunization in mice. Brain Behav Immun 1:52–63PubMedGoogle Scholar
  85. 85.
    Felten DL, Overhage JM, Felten SY, Schmedtje JF (1981) Noradrenergic sympathetic innervation of lymphoid tissue in the rabbit appendix: further evidence for a link between the nervous and immune systems. Brain Res Bull 7:595–612PubMedGoogle Scholar
  86. 86.
    Felten DL, Felten SY, Carlson SL et al (1985) Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol Baltim Md 1950 135:755s–765sGoogle Scholar
  87. 87.
    Crivellato E, Soldano F, Travan L et al (1998) Apposition of enteric nerve fibers to plasma cells and immunoblasts in the mouse small bowel. Neurosci Lett 241:123–126PubMedGoogle Scholar
  88. 88.
    Abrass CK, O’Connor SW, Scarpace PJ, Abrass IB (1985) Characterization of the beta-adrenergic receptor of the rat peritoneal macrophage. J Immunol Baltim Md 1950 135:1338–1341Google Scholar
  89. 89.
    Henricks PA, Van Esch B, Van Oosterhout AJ, Nijkamp FP (1988) Specific and non-specific effects of beta-adrenoceptor agonists on guinea pig alveolar macrophage function. Eur J Pharmacol 152:321–330PubMedGoogle Scholar
  90. 90.
    Liggett SB (1989) Identification and characterization of a homogeneous population of beta 2-adrenergic receptors on human alveolar macrophages. Am Rev Respir Dis 139:552–555.  https://doi.org/10.1164/ajrccm/139.2.552 PubMedGoogle Scholar
  91. 91.
    van Esch B, Henricks PA, van Oosterhout AJ, Nijkamp FP (1989) Guinea pig alveolar macrophages possess beta-adrenergic receptors. Agents Actions 26:123–124PubMedGoogle Scholar
  92. 92.
    Hjemdahl P, Larsson K, Johansson MC et al (1990) Beta-adrenoceptors in human alveolar macrophages isolated by elutriation. Br J Clin Pharmacol 30:673–682PubMedPubMedCentralGoogle Scholar
  93. 93.
    Spengler RN, Allen RM, Remick DG et al (1990) Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol Baltim Md 1950 145:1430–1434Google Scholar
  94. 94.
    Serio M, Potenza MA, Montagnani M et al (1996) Beta-adrenoceptor responsiveness of splenic macrophages in normotensive and hypertensive rats. Immunopharmacol Immunotoxicol 18:247–265.  https://doi.org/10.3109/08923979609052735 PubMedGoogle Scholar
  95. 95.
    Johansson PI, Haase N, Perner A, Ostrowski SR (2014) Association between sympathoadrenal activation, fibrinolysis, and endothelial damage in septic patients: a prospective study. J Crit Care 29:327–333.  https://doi.org/10.1016/j.jcrc.2013.10.028 PubMedGoogle Scholar
  96. 96.
    Ostrowski SR, Gaïni S, Pedersen C, Johansson PI (2015) Sympathoadrenal activation and endothelial damage in patients with varying degrees of acute infectious disease: an observational study. J Crit Care 30:90–96.  https://doi.org/10.1016/j.jcrc.2014.10.006 PubMedGoogle Scholar
  97. 97.
    Yang S, Koo DJ, Zhou M et al (2000) Gut-derived norepinephrine plays a critical role in producing hepatocellular dysfunction during early sepsis. Am J Physiol Gastrointest Liver Physiol 279:G1274–G1281PubMedGoogle Scholar
  98. 98.
    Hubbard WJ, Choudhry M, Schwacha MG et al (2005) Cecal ligation and puncture. Shock Augusta Ga 24(Suppl 1):52–57Google Scholar
  99. 99.
    van der Poll T, Coyle SM, Barbosa K et al (1996) Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia. J Clin Invest 97:713–719.  https://doi.org/10.1172/JCI118469 PubMedPubMedCentralGoogle Scholar
  100. 100.
    Bergmann M, Gornikiewicz A, Sautner T et al (1999) Attenuation of catecholamine-induced immunosuppression in whole blood from patients with sepsis. Shock Augusta Ga 12:421–427Google Scholar
  101. 101.
    Deng J, Muthu K, Gamelli R et al (2004) Adrenergic modulation of splenic macrophage cytokine release in polymicrobial sepsis. Am J Physiol Cell Physiol 287:C730–C736.  https://doi.org/10.1152/ajpcell.00562.2003 PubMedGoogle Scholar
  102. 102.
    Kees MG, Pongratz G, Kees F et al (2003) Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen. J Neuroimmunol 145:77–85PubMedGoogle Scholar
  103. 103.
    Miksa M, Wu R, Zhou M, Wang P (2005) Sympathetic excitotoxicity in sepsis: pro-inflammatory priming of macrophages by norepinephrine. Front Biosci J Virtual Libr 10:2217–2229Google Scholar
  104. 104.
    Izeboud CA, Hoebe KHN, Grootendorst AF et al (2004) Endotoxin-induced liver damage in rats is minimized by beta 2-adrenoceptor stimulation. Inflamm Res 53:93–99.  https://doi.org/10.1007/s00011-003-1228-y PubMedGoogle Scholar
  105. 105.
    Straub RH, Pongratz G, Weidler C et al (2005) Ablation of the sympathetic nervous system decreases gram-negative and increases gram-positive bacterial dissemination: key roles for tumor necrosis factor/phagocytes and interleukin-4/lymphocytes. J Infect Dis 192:560–572.  https://doi.org/10.1086/432134 PubMedGoogle Scholar
  106. 106.
    Lyte M (1992) The role of catecholamines in gram-negative sepsis. Med Hypotheses 37:255–258PubMedGoogle Scholar
  107. 107.
    Cohen J, Opal S, Calandra T (2012) Sepsis studies need new direction. Lancet Infect Dis 12:503–505.  https://doi.org/10.1016/S1473-3099(12)70136-6 PubMedGoogle Scholar
  108. 108.
    Qiu P, Cui X, Barochia A et al (2011) The evolving experience with therapeutic TNF inhibition in sepsis: considering the potential influence of risk of death. Expert Opin Investig Drugs 20:1555–1564.  https://doi.org/10.1517/13543784.2011.623125 PubMedPubMedCentralGoogle Scholar
  109. 109.
    Sanfilippo F, Santonocito C, Morelli A, Foex P (2015) Beta-blocker use in severe sepsis and septic shock: a systematic review. Curr Med Res Opin 31:1817–1825.  https://doi.org/10.1185/03007995.2015.1062357 PubMedGoogle Scholar
  110. 110.
    Morelli A, Donati A, Ertmer C et al (2013) Microvascular effects of heart rate control with esmolol in patients with septic shock: a pilot study. Crit Care Med 41:2162–2168.  https://doi.org/10.1097/CCM.0b013e31828a678d PubMedGoogle Scholar
  111. 111.
    Shang X, Wang K, Xu J et al (2016) The effect of esmolol on tissue perfusion and clinical prognosis of patients with severe sepsis: a prospective cohort study. Biomed Res Int 2016:1038034.  https://doi.org/10.1155/2016/1038034 PubMedPubMedCentralGoogle Scholar
  112. 112.
    Kimmoun A, Louis H, Al Kattani N et al (2015) β1-adrenergic inhibition improves cardiac and vascular function in experimental septic shock. Crit Care Med 43:e332–e340.  https://doi.org/10.1097/CCM.0000000000001078 PubMedGoogle Scholar
  113. 113.
    Mori K, Morisaki H, Yajima S et al (2011) Beta-1 blocker improves survival of septic rats through preservation of gut barrier function. Intensive Care Med 37:1849–1856.  https://doi.org/10.1007/s00134-011-2326-x PubMedGoogle Scholar
  114. 114.
    Lu Y, Yang Y, He X et al (2017) Esmolol reduces apoptosis and inflammation in early sepsis rats with abdominal infection. Am J Emerg Med.  https://doi.org/10.1016/j.ajem.2017.04.056 CrossRefGoogle Scholar
  115. 115.
    Standish A, Enquist LW, Escardo JA, Schwaber JS (1995) Central neuronal circuit innervating the rat heart defined by transneuronal transport of pseudorabies virus. J Neurosci 15:1998–2012PubMedGoogle Scholar
  116. 116.
    Ter Horst GJ, Hautvast RW, De Jongste MJ, Korf J (1996) Neuroanatomy of cardiac activity-regulating circuitry: a transneuronal retrograde viral labelling study in the rat. Eur J Neurosci 8:2029–2041PubMedGoogle Scholar
  117. 117.
    Cano G, Passerin AM, Schiltz JC et al (2003) Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J Comp Neurol 460:303–326.  https://doi.org/10.1002/cne.10643 PubMedGoogle Scholar
  118. 118.
    Cano G, Sved AF, Rinaman L et al (2001) Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol 439:1–18.  https://doi.org/10.1002/cne.1331 PubMedGoogle Scholar
  119. 119.
    Dénes A, Boldogkoi Z, Uhereczky G et al (2005) Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience 134:947–963.  https://doi.org/10.1016/j.neuroscience.2005.03.060 PubMedGoogle Scholar
  120. 120.
    Zhang YH, Lu J, Elmquist JK, Saper CB (2000) Lipopolysaccharide activates specific populations of hypothalamic and brainstem neurons that project to the spinal cord. J Neurosci 20:6578–6586PubMedGoogle Scholar
  121. 121.
    Elmquist JK, Saper CB (1996) Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide. J Comp Neurol 374:315–331. https://doi.org/10.1002/(sici)1096-9861(19961021)374:3<315::aid-cne1>3.0.co;2-4Google Scholar
  122. 122.
    Horn T, Smith PM, McLaughlin BE et al (1994) Nitric oxide actions in paraventricular nucleus: cardiovascular and neurochemical implications. Am J Physiol 266:R306–R313PubMedGoogle Scholar
  123. 123.
    Caldwell FT, Graves DB, Wallace BH (1998) Studies on the mechanism of fever after intravenous administration of endotoxin. J Trauma 44:304–312PubMedGoogle Scholar
  124. 124.
    Lu J, Zhang YH, Chou TC et al (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci 21:4864–4874PubMedPubMedCentralGoogle Scholar
  125. 125.
    Yilmaz MS, Millington WR, Feleder C (2008) The preoptic anterior hypothalamic area mediates initiation of the hypotensive response induced by LPS in male rats. Shock Augusta Ga 29:232–237Google Scholar
  126. 126.
    Millington WR, Yilmaz MS, Feleder C (2016) The initial fall in arterial pressure evoked by endotoxin is mediated by the ventrolateral periaqueductal gray. Clin Exp Pharmacol Physiol 43:612–615.  https://doi.org/10.1111/1440-1681.12573 PubMedPubMedCentralGoogle Scholar
  127. 127.
    Wu Q, Clark MS, Palmiter RD (2012) Deciphering a neuronal circuit that mediates appetite. Nature 483:594–597.  https://doi.org/10.1038/nature10899 PubMedPubMedCentralGoogle Scholar
  128. 128.
    Hopf HB, Skyschally A, Heusch G, Peters J (1995) Low-frequency spectral power of heart rate variability is not a specific marker of cardiac sympathetic modulation. Anesthesiology 82:609–619PubMedGoogle Scholar
  129. 129.
    Introna R, Yodlowski E, Pruett J et al (1995) Sympathovagal effects of spinal anesthesia assessed by heart rate variability analysis. Anesth Analg 80:315–321PubMedGoogle Scholar
  130. 130.
    Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96:3224–3232PubMedGoogle Scholar
  131. 131.
    Goldstein DS, Bentho O, Park M-Y, Sharabi Y (2011) Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol 96:1255–1261.  https://doi.org/10.1113/expphysiol.2010.056259 PubMedPubMedCentralGoogle Scholar
  132. 132.
    Knuepfer MM, Osborn JW (2010) Direct assessment of organ specific sympathetic nervous system activity in normal and cardiovascular disease states. Exp Physiol 95:32–33.  https://doi.org/10.1113/expphysiol.2008.045492 PubMedPubMedCentralGoogle Scholar
  133. 133.
    May CN, Frithiof R, Hood SG et al (2010) Specific control of sympathetic nerve activity to the mammalian heart and kidney. Exp Physiol 95:34–40.  https://doi.org/10.1113/expphysiol.2008.046342 PubMedGoogle Scholar
  134. 134.
    Iriki M, Simon E (2012) Differential control of efferent sympathetic activity revisited. J Physiol Sci 62:275–298.  https://doi.org/10.1007/s12576-012-0208-9 PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Service de Réanimation Anesthésie NeurochirurgicaleCentre Hospitalier Universitaire (CHU) de BordeauxBordeauxFrance
  2. 2.INCIA, Institut de Neurosciences Cognitive et Intégrative d’Aquitaine, UMR 5287BordeauxFrance
  3. 3.University of Bordeaux, INCIA, UMR 5287BordeauxFrance

Personalised recommendations