Skip to main content

Reliability of orthostatic beat-to-beat blood pressure tests: implications for population and clinical studies

Abstract

Objective

To assess the test–retest reliability of orthostatic beat-to-beat blood pressure responses to active standing and related clinical definitions of orthostatic hypotension.

Methods

A random sample of community-dwelling older adults from the pan-European Survey of Health, Ageing and Retirement in Europe, Ireland underwent a health assessment that mimicked that of the Irish Longitudinal Study on Ageing. An active stand test was performed using continuous blood pressure measurements. Participants attended a repeat assessment 4–12 weeks after the initial measurement. A mixed-effects regression model estimated the reliability and minimum detectable change while controlling for fixed observer and time of day effects.

Results

A total of 125 individuals underwent repeat assessment (mean age 66.2 ± 7.5 years; 55.6% female). Mean time between visits was 84.3 ± 23.3 days. There was no significant mean difference in heart rate or blood pressure recovery variables between the first and repeat assessments. Minimum detectable change was noted for changes from resting values in systolic blood pressure (26.4 mmHg) and diastolic blood pressure (13.7 mmHg) at 110 s and for changes in heart rate (10.9 bpm) from resting values at 30 s after standing. Intra-class correlation values ranged from 0.47 for nadir values to 0.80 for heart rate and systolic blood pressure values measured 110 s after standing.

Conclusion

Continuous orthostatic beat-to-beat blood pressure and related clinical definitions show low to moderate reliability and substantial natural variation over a 4–12-week period. Understanding variation in measures is essential for study design or estimating the effects of orthostatic hypotension, while clinically it can be used when evaluating longer term treatment effects.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Moya et al (2009) Guidelines for the diagnosis and management of syncope (version 2009): the task force for the diagnosis and management of syncope of the European society of cardiology (ESC). Eur Heart J 30(21):2631–2671

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I et al (2011) Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res 21(2):69–72

    Article  PubMed  Google Scholar 

  3. 3.

    Finucane C, O'Connell MD, Fan CW, Savva GM, Soraghan C, Nolan H, Cronin H, Kenny RA (2014) Age-related normative changes in phasic orthostatic blood pressure in a large population study: findings from The Irish Longitudinal Study on Ageing (TILDA). Circulation 130(20):1780–1789

    Article  PubMed  Google Scholar 

  4. 4.

    Romero-Ortuno R, Cogan L, O’Shea D, Lawlor BA, Kenny RA (2011) Orthostatic haemodynamics may be impaired in frailty. Age Ageing 40(5):576–583

    Article  PubMed  Google Scholar 

  5. 5.

    Frewen J, Finucane C, Savva GM, Boyle G, Kenny RA (2014) Orthostatic hypotension is associated with lower cognitive performance in adults aged 50 plus with supine hypertension. J Gerontol Biol Sci Med Sci 69(7):878–885

    Article  Google Scholar 

  6. 6.

    Romero-Ortuno R, O’Connell MD, Finucane C, Soraghan C, Fan CW, Kenny RA (2013) Insights into the clinical management of the syndrome of supine hypertension–orthostatic hypotension (SH-OH): the Irish longitudinal study on ageing (TILDA). BMC Geriatr 13(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Frith J, Newton JL, Parry SW (2014) Measuring and defining orthostatic hypotension in the older person. Age Ageing 43(2):168–170

    Article  PubMed  Google Scholar 

  8. 8.

    Wieling W, Krediet CTP, van Dijk N, Linzer M, Tschakovsky ME (2007) Initial orthostatic hypotension: review of a forgotten condition. Clin Sci 112(3):157–165

    Article  PubMed  Google Scholar 

  9. 9.

    Lagro J, Laurenssen NCW, Schalk BWM, Schoon Y, Claassen JAHR, Rikkert MGMO (2012) Diastolic blood pressure drop after standing as a clinical sign for increased mortality in older falls clinic patients. J Hypertens 30(6):1195–1202

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Schwartz GL, Turner ST, Moore JH, Sing CF (2000) Effect of time of day on intraindividual variability in ambulatory blood pressure. Am J Hypertens 13(11):1203–1209

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    O’Brien E, Waeber B, Parati G, Staessen J, Myers MG (2001) Blood pressure measuring devices: recommendations of the European society of hypertension. BMJ 322(7285):531–536

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hutcheon JA, Chiolero A, Hanley JA (2010) Random measurement error and regression dilution bias. BMJ 340:c2289–c2299

    Article  PubMed  Google Scholar 

  13. 13.

    Cronin H, O’Regan C, Finucane C, Kearney P, Kenny RA (2013) Health and aging: development of the Irish longitudinal study on ageing health assessment. J Am Geriatr Soc 1(61):S269–S278

    Article  Google Scholar 

  14. 14.

    Whelan BJ, Savva GM (2013) Design and methodology of the Irish longitudinal study on ageing. J Am Geriatr Soc 1(61):S265–S268

    Article  Google Scholar 

  15. 15.

    Delaney L, Harmon C, Kelleher C, Kennedy J, Gannon B, O’Shea E (2008). SHARE Ireland first results [Internet]. University College Dublin. Geary Institute. http://researchrepository.ucd.ie/handle/10197/1204 (cited 30 Sep 2014)

  16. 16.

    Soraghan CJ, Fan CW, Hayakawa T, Cronin H, Foran T, Boyle G et al (2014) TILDA signal processing framework (SPF) for the analysis of BP responses to standing in epidemiological and clinical studies. EMBS International Conference on Biomedical and Health Informatics (BHI), Valencia, pp 793–796

  17. 17.

    Wieling W, van Brederode JF, de Rijk LG, Borst C, Dunning AJ (1982) Reflex control of heart rate in normal subjects in relation to age: a data base for cardiac vagal neuropathy. Diabetologia 22(3):163–166

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I et al (2005) The Montreal Cognitive Assessment MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699

    Article  PubMed  Google Scholar 

  19. 19.

    Newson R, ALSPAC Study Team (2003) Multiple-test procedures and smile plots. Stat J 3(2):109–132

    Google Scholar 

  20. 20.

    Radloff LS (1977) The CES-D scale a self-report depression scale for research in the general population. Appl Psychol Meas 1(3):385–401

    Article  Google Scholar 

  21. 21.

    Hartwig MS, Cardoso SS, Hathaway DK, Gaber AO (1994) Reliability and validity of cardiovascular and vasomotor autonomic function tests. Diabet Care 17(12):1433–1440

    CAS  Article  Google Scholar 

  22. 22.

    Ziegler D, Laux G, Dannehl K, Spüler M, Mühlen H, Mayer P et al (1992) Assessment of cardiovascular autonomic function: age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabet Med 9(2):166–175

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Gabbett TJ, Gass GC (2005) Reliability of orthostatic responses in healthy men aged between 65 and 75 years. Exp Physiol 90(4):587–592

    Article  PubMed  Google Scholar 

  24. 24.

    Mancia G, Bombelli M, Facchetti R, Madotto F, Corrao G, Trevano FQ et al (2007) Long-term prognostic value of blood pressure variability in the general population: results of the pressioni arteriose Monitorate e Loro associazioni study. Hypertension 49(6):1265–1270

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Conway J, Boon N, Davies C, Jones JV, Sleight P (1984) Neural and humoral mechanisms involved in blood pressure variability. J Hypertens 2(2):203–208

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Smith JJ, Porth CJ (1991) Posture and the circulation: the age effect. Exp Gerontol 26(2–3):141–162

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Smit AAJ, Halliwill JR, Low PA, Wieling W (1999) Pathophysiological basis of orthostatic hypotension in autonomic failure. J Physiol 519(1):1–10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fan CW, Savva GM, Finucane C, Cronin H, O’Regan C, Kenny RA (2012) Factors affecting continuous beat-to-beat orthostatic blood pressure response in community-dwelling older adults. Blood Press Monit 17(4):160–163. doi:10.1097/MBP.0b013e328356821f

    Article  PubMed  Google Scholar 

  29. 29.

    Frith J (2015) Diagnosing orthostatic hypotension: a narrative review of the evidence. Br Med Bull 115(1):123–134. doi:10.1093/bmb/ldv025

    Article  PubMed  Google Scholar 

  30. 30.

    Naschitz JE, Rosner I (2007) Orthostatic hypotension: framework of the syndrome. Postgrad Med J 83:568–574

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Weiss A, Chagnac A, Beloosesky Y et al (2004) Orthostatic hypotension in the elderly: are the diagnostic criteria adequate? J Hum Hypertens 18:301–305

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Belmin J, Abderrhamane M, Medjahed S et al (2000) Variability of blood pressure response to orthostatism and reproducibility of the diagnosis of orthostatic hypotension in elderly subjects. J Gerontol A Biol Sci Med Sci 55:M667–M671

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    van Wijnen VK, Harms MP, Go-Schön IK, Westerhof BE, Krediet CT, Stewart J, Wieling W (2016) Initial orthostatic hypotension in teenagers and young adults. Clin Auton Res 26(6):441–449 (Epub 2016 Sep 16)

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Costa A, Bosone D, Ramusino MC, Ghiotto N, Guaschino E, Zoppi A, D’Angelo A, Fogari R (2016) Twenty-four-hour blood pressure profile, orthostatic hypotension, and cardiac dysautonomia in elderly type 2 diabetic hypertensive patients. Clin Auton Res 26(6):433–439 (Epub 2016 Sep 13)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution of the participants and members of the TILDA and SHARE teams. Funding for TILDA was received from the Atlantic Philanthropies, the Irish Government and Irish Life plc. The TILDA-SHARE collaboration was funded by National Institute for Ageing Grant No. R21 AG040387.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Finucane.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 484 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finucane, C., Savva, G.M. & Kenny, R.A. Reliability of orthostatic beat-to-beat blood pressure tests: implications for population and clinical studies. Clin Auton Res 27, 31–39 (2017). https://doi.org/10.1007/s10286-016-0393-3

Download citation

Keywords

  • Reliability
  • Orthostatic blood pressure
  • Impaired blood pressure stabilisation
  • Orthostatic hypotension
  • Syncope