Skip to main content

Sweating on the palm and sole: physiological and clinical relevance

Abstract

In mammals, sweating is a multifunctional response that aids in locomotion, thermal regulation, self-protection, and communication of psychological state. Humans possess three types of sweat glands (apocrine, eccrine, and apoeccrine) that are differentially distributed on the body surface and make unique contributions to these distinct functions of the sweating response. In humans, eccrine glands, which are widely distributed on hairy skin, play an important role in thermoregulation. They are also found on the glabrous skin of the palm and sole, where they are not usually activated by heat, but rather by deep respiration, mental stress, and local tactile stimulation. Sweating on the palm and sole, so-called “emotional sweating”, acts to prevent slippage while grasping or performing a delicate task using the fingertips. Although the central pathways of emotional sweating are not yet elucidated in detail, it is thought that the amygdala, cingulate cortex, and medulla participate via efferent fibers that descend through the spinal cord and connect to preganglionic sympathetic neurons in the nucleus intermediolateralis. The limbic system, including the amygdala and cingulate cortex, is critical for emotional processing and many cognitive functions. Thus, measurement of sweat output on the palm or sole is useful for evaluating sympathetic function and limbic activity in autonomic and psychiatric disorders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Saga K (2002) Structure and function of human sweat glands studied with histochemistry and cytochemistry. Prog Histochem Cytochem 37:323–386

    CAS  PubMed  Article  Google Scholar 

  2. McAllen RM (1986) Action and specificity of ventral medullary vasopressor neurones in the cat. Neuroscience 18:51–59

    CAS  PubMed  Article  Google Scholar 

  3. Groscurth P (2002) Anatomy of sweat glands. Curr Probl Dermatol 30:1–9

    PubMed  Google Scholar 

  4. Noel F, Pierard-Franchimont C, Pierard GE, Quatresooz P (2012) Sweaty skin, background and assessments. Int J Dermatol 51:647–655

    PubMed  Article  Google Scholar 

  5. Hashimoto K, Gross BG, Lever WF (1965) The ultrastructure of the skin of human embryos. I. The intraepidermal eccrine sweat duct. J Invest Dermatol 45:139–151

    CAS  PubMed  Article  Google Scholar 

  6. Sato M, Maruhashi J, Yai H (1979) Effects of various enzymes and chemical modification reagents on acetylcholine-induced responses of the excitatory and inhibitory types. Brain Res Bull 4:184–186

    CAS  PubMed  Article  Google Scholar 

  7. Pierard GE, Elsner P, Marks R, Masson P, Paye M, Group E (2003) EEMCO guidance for the efficacy assessment of antiperspirants and deodorants. Skin Pharmacol Appl Skin Physiol 16:324–342

    Article  Google Scholar 

  8. Cohn BA (1998) The vital role of the skin in human natural history. Int J Dermatol 37:821–824

    CAS  PubMed  Article  Google Scholar 

  9. Asahina M, Suzuki A, Mori M, Kanesaka T, Hattori T (2003) Emotional sweating response in a patient with bilateral amygdala damage. Int J Psychophysiol 47:87–93

    PubMed  Article  Google Scholar 

  10. Asahina M, Kikkawa Y, Suzuki A, Hattori T (2003) Cutaneous sympathetic function in patients with multiple system atrophy. Clin Auton Res 13:91–95

    PubMed  Article  Google Scholar 

  11. Kikkawa Y, Asahina M, Suzuki A, Hattori T (2003) Cutaneous sympathetic function and cardiovascular function in patients with progressive supranuclear palsy and Parkinson’s disease. Parkinsonism Relat Disord 10:101–106

    PubMed  Article  Google Scholar 

  12. Akaogi Y, Asahina M, Yamanaka Y, Koyama Y, Hattori T (2009) Sudomotor, skin vasomotor, and cardiovascular reflexes in 3 clinical forms of Lewy body disease. Neurology 73:59–65

  13. Lim CL, Seto-Poon M, Clouston PD, Morris JG (2003) Sudomotor nerve conduction velocity and central processing time of the skin conductance response. Clin Neurophysiol 114:2172–2180

    CAS  PubMed  Article  Google Scholar 

  14. Boucsein W (1992) Electrodermal activity. Plenum Press, New York

    Book  Google Scholar 

  15. Mangina CA, Beuzeron-Mangina JH (1996) Direct electrical stimulation of specific human brain structures and bilateral electrodermal activity. Int J Psychophysiol 22:1–8

    CAS  PubMed  Article  Google Scholar 

  16. Nathan PW, Smith MC (1987) The location of descending fibres to sympathetic preganglionic vasomotor and sudomotor neurons in man. J Neurol Neurosur Ps 50:1253–1262

    CAS  Article  Google Scholar 

  17. LeDoux JE (2000) Emotion circuits in the brain. Annu RevNeurosci 23:155–184

    CAS  Article  Google Scholar 

  18. Morrison SE, Salzman CD (2010) Re-valuing the amygdala. Curr Opin Neurobiol 20:221–230

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Mesulam MM (2000) The amygdala, emotion, and distributed information into explicit memry: gateway into the neurology of recollection. In: Principles of Behavioral and Cognitive Neurology. Oxford University Press, p 4

  20. Asahina M, Fujinuma Y, Yamanaka Y, Fukushima T, Katagiri A, Ito S, Kuwabara S (2011) Diminished emotional sweating in patients with limbic encephalitis. J Neurol Sci 306:16–19

    PubMed  Article  Google Scholar 

  21. Macefield VG, James C, Henderson LA (2013) Identification of sites of sympathetic outflow at rest and during emotional arousal: concurrent recordings of sympathetic nerve activity and fMRI of the brain. Int J Psychophysiol 89:451–459

    PubMed  Article  Google Scholar 

  22. Medford N, Critchley HD (2010) Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct Funct 214:535–549

    PubMed Central  PubMed  Article  Google Scholar 

  23. Hurst P, Garfield AS, Marrow C, Heisler LK, Evans ML (2012) Recurrent hypoglycemia is associated with loss of activation in rat brain cingulate cortex. Endocrinology 153:1908–1914

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Blessing WW, Yu YH, Nalivaiko E (1999) Raphe pallidus and parapyramidal neurons regulate ear pinna vascular conductance in the rabbit. Neurosci Lett 270:33–36

    CAS  PubMed  Article  Google Scholar 

  25. Morrison SF (1999) RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am J Physiol 276:R962–R973

    CAS  PubMed  Google Scholar 

  26. Mason P (2001) Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Annu Rev Neurosci 24:737–777

    CAS  PubMed  Article  Google Scholar 

  27. Asahina M, Sakakibara R, Liu Z, Ito T, Yamanaka Y, Nakazawa K, Shimizu E, Hattori T (2007) The raphe magnus/pallidus regulates sweat secretion and skin vasodilation of the cat forepaw pad: a preliminary electrical stimulation study. Neurosci Lett 415:283–287

  28. Shafton AD, McAllen RM (2013) Location of cat brain stem neurons that drive sweating. Am J Physiol. Reg I 304:R804–R809

    CAS  Google Scholar 

  29. Salzman CD, Fusi S (2010) Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu Rev Neurosci 33:173–202

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. Shibasaki M, Wilson TE, Crandall CG (2006) Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol 100:1692–1701

    PubMed  Article  Google Scholar 

  31. Morrison SF, Nakamura K (2011) Central neural pathways for thermoregulation. Front Biosci 16:74–104

    CAS  Article  Google Scholar 

  32. Johnson LC, Lubin A (1966) Spontaneous electrodermal activity during waking and sleeping. Psychophysiology 3:8–17

    CAS  PubMed  Article  Google Scholar 

  33. Mathias CJ, Bannister R (2002) Investigationnod autonomic disorders. In: Mathias CJ, Bannister R (eds) Autonomic failure: text book of clinical disorders of the autonomic nervous system. Oxford University Press, Oxford, pp 169–195

    Google Scholar 

  34. Vetrugno R, Liguori R, Cortelli P, Montagna P (2003) Sympathetic skin response: basic mechanisms and clinical applications. Clin Auton Res 13:256–270

    PubMed  Article  Google Scholar 

  35. Watanabe H, Shindo K, Ida H, Tanaka H, Nagasaka T, Shiozawa Z (2003) Aging effects of sympathetic reflex activities on skin nerves. Gerontology 49:366–373

    PubMed  Article  Google Scholar 

  36. Drory VE, Korczyn AD (1993) Sympathetic skin response: age effect. Neurology 43:1818–1820

    CAS  PubMed  Article  Google Scholar 

  37. Marchello L, Donadio V, Montagna P (1996) The sympathetic skin response: a neurological perspective. Funct Neurol 11:283–299

    CAS  PubMed  Google Scholar 

  38. Asahina M, Yamanaka Y, Koyama Y, Hirano S, Hattori T (2006) Thermal and emotional sweating in Fabry disease and idiopathic acquired generalized anhidrosis. Jp J Perspiration Res 13:6

    Google Scholar 

  39. Nakazato Y, Tamura N, Ohkuma A, Yoshimaru K, Shimazu K (2004) Idiopathic pure sudomotor failure: anhidrosis due to deficits in cholinergic transmission. Neurology 63:1476–1480

    CAS  PubMed  Article  Google Scholar 

  40. Asahina M, Yamanaka Y, Akaogi Y, Kuwabara S, Koyama Y, Hattori T (2008) Measurements of sweat response and skin vasomotor reflex for assessment of autonomic dysfunction in patients with diabetes. J Diabetes Complications 22:278–283

    PubMed  Article  Google Scholar 

  41. Soliven B, Maselli R, Jaspan J, Green A, Graziano H, Petersen M, Spire JP (1987) Sympathetic skin response in diabetic neuropathy. Muscle Nerve 10:711–716

    CAS  PubMed  Article  Google Scholar 

  42. Shivji ZM, Ashby P (1999) Sympathetic skin responses in hereditary sensory and autonomic neuropathy and familial amyloid neuropathy are different. Muscle Nerve 22:1283–1286

    CAS  PubMed  Article  Google Scholar 

  43. Wang SJ, Liao KK, Liou HH, Lee SS, Tsai CP, Lin KP, Kao KP, Wu ZA (1994) Sympathetic skin response and R-R interval variation in chronic uremic patients. Muscle Nerve 17:411–418

    CAS  PubMed  Article  Google Scholar 

  44. Navarro X, Miralles R, Espadaler JM, Rubies-Prat J (1993) Comparison of sympathetic sudomotor and skin responses in alcoholic neuropathy. Muscle Nerve 16:404–407

    CAS  PubMed  Article  Google Scholar 

  45. Hilz MJ, Stemper B, Axelrod FB (1999) Sympathetic skin response differentiates hereditary sensory autonomic neuropathies III and IV. Neurology 12:1652–1657

    Article  Google Scholar 

  46. Forester O (1936) Symptomatologie der Erkrankungen des Rückenmarks und seiner Wurzeln. Die Sympatische Seitenhornkette. In: Bumke O, Forester O (eds) Handbuch der Neurologie. Springer, Berlin, pp 32–56

    Google Scholar 

  47. Cariga P, Catley M, Mathias CJ, Savic G, Frankel HL, Ellaway PH (2002) Organisation of the sympathetic skin response in spinal cord injury. J Neurol Neurosur Ps 72:356–360

  48. Yokota T, Matsunaga T, Okiyama R, Hirose K, Tanabe H, Furukawa T, Tsukagoshi H (1991) Sympathetic skin response in patients with multiple sclerosis compared with patients with spinal cord transection and normal controls. Brain 114(Pt 3):1381–1394

    PubMed  Article  Google Scholar 

  49. Zahn TP, Grafman J, Tranel D (1999) Frontal lobe lesions and electrodermal activity: effects of significance. Neuropsychologia 37:1227–1241

    CAS  PubMed  Article  Google Scholar 

  50. Magnifico F, Misra VP, Murray NM, Mathias CJ (1998) The sympathetic skin response in peripheral autonomic failure–evaluation in pure failure, pure cholinergic dysautonomia and dopamine-beta-hydroxylase deficiency. Clin Auton Res 8:133–138

    CAS  PubMed  Article  Google Scholar 

  51. Wakabayashi K, Takahashi H (1997) Neuropathology of autonomic nervous system in Parkinson’s disease. European Neurol 38(Suppl 2):2–7

    Article  Google Scholar 

  52. Nagai Y (2011) Biofeedback and epilepsy. Curr Neurol Neurosci Rep 11:443–450

Download references

Acknowledgments

The authors thank Dr. David A. Low and Dr. Tatsuya Yamamoto for constructive comments on the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study was approved by the local institutional review board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Asahina.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asahina, M., Poudel, A. & Hirano, S. Sweating on the palm and sole: physiological and clinical relevance. Clin Auton Res 25, 153–159 (2015). https://doi.org/10.1007/s10286-015-0282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-015-0282-1

Keywords

  • Emotional sweating
  • Eccrine gland
  • Apocrine gland
  • Glabrous skin
  • Electrodermal activity
  • Sympathetic nervous system