Skip to main content
Log in

Autonomic mechanisms associated with heart rate and vasoconstrictor reserves

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Introduction

Hemorrhage is accompanied by baroreflex-mediated tachycardia and vasoconstriction. The difference between baseline and maximum responses is defined as the heart rate (HR) and vasoconstrictor ‘reserve’.

Objective

To test the hypothesis that higher HR and vasoconstrictor reserves in subjects with high tolerance (HT) to central hypovolemia is associated with greater reserve for sympathoexcitation and vagal withdrawal compared with low tolerant (LT) subjects.

Methods

R–R intervals (RRI), systolic arterial pressure (SAP), estimated stroke volume, and muscle sympathetic nerve activity (MSNA) were measured during lower body negative pressure (LBNP) designed to induce pre-syncope. Subjects with tolerance ≤60 mmHg LBNP were classified as LT (n = 22) while subjects who tolerated LBNP levels >60 mmHg were classified as HT (n = 56). Spontaneous cardiac baroreflex sensitivity (BRS) was assessed via RRI-SAP down–down sequences.

Results

HR reserve in HT subjects (+52 ± 2 bpm) was twofold greater (P < 0.001) than that in LT subjects (+27 ± 3 bpm). Vasoconstrictor reserve in the HT group (+3.4 ± 0.5 pru) was greater (P = 0.04) than that of the LT group (+1.9 ± 0.3 pru). HT subjects demonstrated greater (P ≤ 0.03) BRS reserve (−14.2 ± 1.8 ms/mmHg) and MSNA reserve (+41 ± 2 bursts/min) compared with LT subjects (−7.4 ± 1.7 ms/mmHg and +26 ± 7 bursts/min).

Interpretation

Our data support the hypothesis that greater physiological reserve capacity for tachycardia and vasoconstriction related to high tolerance to central hypovolemia is associated with greater reserves for sympathoexcitation and cardiac vagal withdrawal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams SL, Greene JS (1986) Absence of a tachycardic response to intraperitoneal hemorrhage. J Emerg Med 4:383–389

    Article  PubMed  CAS  Google Scholar 

  2. Ahlgren JK, Hayward LF (2011) Daily voluntary exercise alters the cardiovascular response to hemorrhage in conscious male rats. Auton Neurosci 160:42–52

    Article  PubMed  Google Scholar 

  3. Brasel KJ, Guse C, Gentilello LM, Nirula R (2007) Heart rate: is it truly a vital sign? J Trauma 62:812–817

    Article  PubMed  Google Scholar 

  4. Buckey JC Jr, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, Gaffney FA, Blomqvist CG (1996) Orthostatic intolerance after spaceflight. J Appl Physiol 81:7–18

    PubMed  Google Scholar 

  5. Cai Y, Holm S, Jenstrup M, Stromstad M, Eigtved A, Warberg J, Hojgaard L, Friberg L, Secher NH (2000) Electrical admittance for filling of the heart during lower body negative pressure in humans. J Appl Physiol 89:1569–1576

    PubMed  CAS  Google Scholar 

  6. Cancio LC, Batchinsky AI, Salinas J, Kuusela TA, Convertino VA, Wade CE, Holcomb JB (2008) Heart-rate complexity for prediction of prehospital lifesaving interventions in trauma patients. J Trauma 65:813–819

    Article  PubMed  Google Scholar 

  7. Convertino VA (1993) Endurance exercise training: conditions of enhanced hemodynamic responses and tolerance to LBNP. Med Sci Sports Exerc 25:705–712

    PubMed  CAS  Google Scholar 

  8. Convertino VA (1998) Gender differences in autonomic function associated with blood pressure regulation. Am J Physiol 44:R1909–R1920

    Google Scholar 

  9. Convertino VA (1999) G-Factor as a tool in basic research: mechanisms of orthostatic tolerance. J Gravit Physiol 6:73–76

    Google Scholar 

  10. Convertino VA (2001) Mechanisms of blood pressure regulation that differ in men repeatedly exposed to high-G acceleration. Am J Physiol 280:R947–R958

    CAS  Google Scholar 

  11. Convertino VA, Cooke WH (2005) Evaluation of cardiovascular risks of spaceflight does not support the NASA bioastronautics critical path roadmap. Aviat Space Environ Med 76:869–876

    PubMed  Google Scholar 

  12. Convertino VA, Doerr DF, Eckberg DL, Fritsch JM, Vernikos-Danellis J (1990) Head-down bed rest impairs vagal baroreflex responses and provokes orthostatic hypotension. J Appl Physiol 68:1458–1464

    PubMed  CAS  Google Scholar 

  13. Convertino VA, Moulton SL, Grudic GZ, Rickards CA, Hinojosa-Laborde C, Gerhardt RT, Blackbourne LH, Ryan KL (2011) Use of machine-learning techniques for noninvasive monitoring of hemorrhage. J Trauma 71:S25–S32

    Google Scholar 

  14. Convertino VA, Reister CA (2000) Effect of G-suit protection on carotid–cardiac baroreflex function. Aviat Space Environ Med 71:31–36

    PubMed  CAS  Google Scholar 

  15. Convertino VA, Ryan KL, Rickards CA, Salinas J, McManus JG, Cooke WH, Holcomb JB (2008) Physiological and medical monitoring for en route care of combat casualties. J Trauma 64:S342–S353

    Article  PubMed  Google Scholar 

  16. Convertino VA, Sather TM (2000) Effects of cholinergic and beta-adrenergic blockade on orthostatic tolerance in healthy subjects. Clin Auton Res 10:327–336

    Article  PubMed  CAS  Google Scholar 

  17. Convertino VA, Sather TM (2000) Vasoactive neuroendocrine responses associated with tolerance to lower body negative pressure in humans. Clin Physiol 20:177–184

    Article  PubMed  CAS  Google Scholar 

  18. Cooke WH (2000) Topical anesthetic before microneurography decreases pain without affecting sympathetic traffic. Auton Neurosci 86:120–126

    Article  PubMed  CAS  Google Scholar 

  19. Cooke WH, Convertino VA (2005) Heart rate variability and spontaneous baroreflex sequences: implications for autonomic monitoring during hemorrhage. J Trauma 58:798–805

    Article  PubMed  Google Scholar 

  20. Cooke WH, Ryan KL, Convertino VA (2004) Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans. J Appl Physiol 96:1249–1261

    Article  PubMed  Google Scholar 

  21. Cooke WH, Salinas J, Convertino VA, Ludwig DA, Hinds D, Duke JH, Moore FA, Holcomb JB (2006) Heart rate variability and its association with mortality in pre-hospital trauma patients. J Trauma 60:363–370

    Article  PubMed  Google Scholar 

  22. Cooke WH, Salinas J, McManus JM, Ryan KL, Rickards CA, Holcomb JB, Convertino VA (2006) Heart period variability in trauma patients may predict mortality and allow remote triage. Aviat Space Environ Med 77:1107–1112

    PubMed  Google Scholar 

  23. Demetriades D, Chan LS, Bhasin P, Berne TV, Ramicone E, Huicochea F, Velmahos G, Cornwell EE, Belzberg H, Murray J, Asensio JA (1998) Relative bradycardia in patients with traumatic hypotension. J Trauma 45:534–539

    Article  PubMed  CAS  Google Scholar 

  24. Engelke KA, Doerr DF, Crandall CG, Convertino VA (1996) Application of acute maximal exercise to protect orthostatic tolerance after simulated microgravity. Am J Physiol 271:R837–R847

    PubMed  CAS  Google Scholar 

  25. Faris IB, Jamieson GG, Ludbrook J (1983) Effects of acute changes in blood volume on the carotid sinus baroreceptor reflex in conscious rabbits. J Physiol 337:563–573

    PubMed  CAS  Google Scholar 

  26. Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE (1996) Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J Appl Physiol 81:2134–2141

    PubMed  CAS  Google Scholar 

  27. Fu Q, Witkowski S, Okazaki K, Levine BD (2005) Effects of gender and hypovolemia on sympathetic neural responses to orthostatic stress. Am J Physiol 289:R109–R116

    CAS  Google Scholar 

  28. Guo H, Tierney N, Schaller F, Raven PB, Smith SA, Shi X (2006) Cerebral autoregulation is preserved during orthostatic stress superimposed with systemic hypotension. J Appl Physiol 100:1785–1792

    Article  PubMed  Google Scholar 

  29. Jansen JR, Wesseling KT, Settels JJ, Schreuder JJ (1990) Continuous cardiac output monitoring by pulse contour during cardiac surgery. Eur Heart J 11(Supp I):26–32

    PubMed  Google Scholar 

  30. Jansen RP (1978) Relative bradycardia: a sign of acute intraperitoneal bleeding. Aust NZ J Obstet Gynaecol 18:206–208

    Article  CAS  Google Scholar 

  31. Ley EJ, Salim A, Kohanzadeh S, Mirocha J, Margulies DR (2009) Relative bradycardia in hypotensive trauma patients: a reappraisal. J Trauma 67:1051–1054

    Article  PubMed  Google Scholar 

  32. Ludbrook J, Faris IB, Jamieson GG (1981) Blood volume and the carotid baroreceptor reflex in conscious rabbits. Clin Sci (Lond) 61(Suppl 7):173s–175s

    Google Scholar 

  33. Ludwig DA, Convertino VA (1994) Predicting orthostatic tolerance: physics or physiology. Aviat Space Environ Med 65:404–411

    PubMed  CAS  Google Scholar 

  34. Meck JV, Waters WW, Ziegler MG, deBlock HF, Mills PJ, Robertson D, Huang PL (2004) Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am J Physiol Heart Circ Physiol 286:H1486–H1495

    Article  PubMed  CAS  Google Scholar 

  35. Randall WC, Kroeker T, Hotmire K, Burkholder T, Huprich S, Firth K (1992) Baroreflex responses to the stress of severe hemorrhage in the rat. Integr Physiol Behav. Sci. 27:197–208

    Article  PubMed  CAS  Google Scholar 

  36. Rickards CA, Ryan KL, Cooke WH, Convertino VA (2011) Tolerance to central hypovolemia: the influence of oscillations in arterial pressure and cerebral blood velocity. J Appl Physiol 111:1048–1058

    Google Scholar 

  37. Rothlisberger BW, Badra LJ, Hoag JB, Cooke WH, Kuusela TA, Tahvanainen KUO, Eckberg DL (2003) Spontaneous ‘baroreflex sequences’ occur as deterministic functions of breathing phase. Clin Physiol Funct Imaging 23:307–313

    Article  PubMed  Google Scholar 

  38. Sather TM, Goldwater DJ, Montgomery LD, Convertino VA (1986) Cardiovascular dynamics associated with tolerance to lower body negative pressure. Aviat Space Environ Med 57:413–419

    PubMed  CAS  Google Scholar 

  39. Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, Pons PT (1995) Epidemiology of trauma deaths: a reassessment. J Trauma 38:185–193

    Article  PubMed  CAS  Google Scholar 

  40. Snyder HS, Dresnick SJ (1989) Lack of tachycardic response to hypotension in penetrating abdominal injuries. J Emerg Med 7:335–339

    Article  PubMed  CAS  Google Scholar 

  41. Soller BR, Yang Y, Soyemi OO, Ryan KL, Rickards CA, Walz JM, Heard SO, Convertino VA (2008) Noninvasively determined muscle oxygen saturation is an early indicator of central hypovolemia in humans. J Appl Physiol 104:475–481

    Article  PubMed  Google Scholar 

  42. Thomas I, Dixon J (2004) Bradycardia in acute haemorrhage. BMJ 328:451–453

    Article  PubMed  Google Scholar 

  43. Thompson D, Adams SL, Barrett J (1990) Relative bradycardia in patients with isolated penetrating abdominal trauma and isolated extremity trauma. Ann Emerg Med 19:268–275

    Article  PubMed  CAS  Google Scholar 

  44. Vayer JS, Henderson JV, Bellamy RF, Galper AR (1988) Absence of a tachycardic response to shock in penetrating intraperitoneal injury. Ann Emerg Med 17:227–231

    Article  PubMed  CAS  Google Scholar 

  45. Victorino GP, Battistella FD, Wisner DH (2003) Does tachycardia correlate with hypotension after trauma? J Am Coll Surg 196:679–684

    Article  PubMed  Google Scholar 

  46. Ward KR, Tiba MH, Ryan KL, Filho IP, Rickards CA, Witten T, Soller BR, Ludwig DA, Convertino VA (2010) Oxygen transport characterization of a human model of progressive hemorrhage. Resuscitation 81:987–993

    Article  PubMed  Google Scholar 

  47. Waters WW, Ziegler MG, Meck JV (2002) Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol 92:586–594

    PubMed  Google Scholar 

  48. Zollei E, Paprika D, Makra P, Gingl Z, Vezendi K, Rudas L (2004) Human autonomic responses to blood donation. Auton Neurosci 110:114–120

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the experimental subjects for their cheerful cooperation, as well as Mr Gary Muniz for his superb technical assistance and Drs John McManus, Girish Sethuraman, Keith Berry, Steven Glorsky and Robert Gerhardt for their assistance with physical examinations and medical monitoring of the subjects. This research was supported by funding from the US Army Combat Casualty Care Research Program. The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the US Department of the Army or the US Department of Defense.

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Convertino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Convertino, V.A., Rickards, C.A. & Ryan, K.L. Autonomic mechanisms associated with heart rate and vasoconstrictor reserves. Clin Auton Res 22, 123–130 (2012). https://doi.org/10.1007/s10286-011-0151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-011-0151-5

Keywords

Navigation