Skip to main content
Log in

Changes in autonomic balance in patients with decompensated chronic heart failure

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Objective

In chronic heart failure (CHF) episodes of decompensation may be linked to derangements within cardiovascular reflex control. We investigated changes in autonomic tone in patients with decompensated CHF.

Methods

We examined 17 patients with decompensated CHF (14 men, age 62 ± 2 years, LVEF 32 ± 3%) on admission and after clinical stabilization. Control group consisted of 9 patients (8 men, age 64 ± 7 years, LVEF 30 ± 7%) with stable CHF. Assessment of autonomic tone was based on 5-min ECG and blood pressure recordings using time and frequency domains of heart rate variability (HRV) and a sequence method to derive baroreflex sensitivity (BRS).

Results

On admission, decompensated CHF patients had reduced HRV indices (p < 0.05) and depressed BRS (p < 0.01) as compared to those with stable CHF. After clinical stabilization (4 ± 2 days of treatment) time domain HRV indices and BRS increased (SDNN, 34.4 ± 5.4 vs. 55.8 ± 9.8 ms; RMSSD, 38.4 ± 12.0 vs. 51.1 ± 10.4 ms; BRS, 4.3 ± 0.7 vs. 7.6 ± 1.3 ms/mmHg; all p < 0.01) and became similar to those seen in stable CHF patients. Breathing with oxygen affected autonomic indices neither in decompensated nor in stable CHF patients. Eight patients developed an episode of additional CHF worsening during hospitalization, in whom the third assessment was performed on discharge. Worsening in clinical status was followed by a decrease in HRV and BRS that became similar to those noted on admission.

Interpretation

HRV measures and BRS are severely deranged in the acute phase of CHF decompensation. Clinical stabilization results in an improvement of autonomic indices. However, subsequent clinical worsening adversely affects HRV and BRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gheorghiade M, Pand PS (2009) Acute heart failure syndromes. J Am Coll Cardiol 59(7):557–573

    Article  Google Scholar 

  2. Gheorghiade M, Zannad F, Sopko G et al (2005) Acute heart failure syndromes: current state and framework for future research. Circulation 112:3958–3968

    Article  PubMed  Google Scholar 

  3. Adams KF Jr, Fonarow GC, Emerman CL et al (2005) Characteristics and outcomes of patients hospitalised for heart failure in the United States: rationale, design, and preliminary observations from the first 1,000,000 cases in the Acute Decompensated heart Failure National Registry (ADHERE). Am Heart J 149:209–216

    Article  PubMed  Google Scholar 

  4. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Strömberg A, van Veldhuisen DJ, Atar D, Hoes AW, Keren A, Mebazaa A, Nieminen M, Priori SG, Swedberg K, Task Force for Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of European Society of Cardiology et al (2008) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Eur Heart J 29(19):2388–2442

    Article  CAS  PubMed  Google Scholar 

  5. Fonarow GC, Stough WG, Abraham WT et al (2007) Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalised for heart failure: a report from the OPTIMIZE-HF registry. J Am Coll Cardiol 50:768–777

    Article  PubMed  Google Scholar 

  6. Fonarow GC, Abraham WT, Albert NM et al (2007) Association between performance measures and clinical outcomes of patients hospitalized with heart failure. JAMA 297:61–70

    Article  CAS  PubMed  Google Scholar 

  7. Jankowska EA, Ponikowski P, Piepoli MF, Banasiak W, Anker SD, Poole-Wilson PA (2006) Autonomic imbalance and immune activation in chronic heart failure—pathophysiological links. Cardiovasc Res 70:434–445

    Article  CAS  PubMed  Google Scholar 

  8. Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100:999–1008

    CAS  PubMed  Google Scholar 

  9. Braunwald E, Bristow MR (2000) Congestive heart failure: fifty years of progress. Circulation 102: IV14

  10. Floras JS (2003) Sympathetic activation in human heart failure: diverse mechanisms, therapeutic opportunities. Acta Physiol Scand 75:15–21

    Google Scholar 

  11. Massie BM (1988) Is neurohormonal activation deleterious to the long-term outcome of patients with congestive heart failure? J Am Coll Cardiol 12:547–558

    Article  CAS  PubMed  Google Scholar 

  12. Francis GS, Rector TS, Cohn JN (1988) Sequential neurohormonal measurements in patients with congestive heart failure. Am Heart J 116:1464–1468

    Article  CAS  PubMed  Google Scholar 

  13. Harris P (1987) Congestive heart failure: central role of arterial blood pressure. Br Heart J 58:190–203

    Article  CAS  PubMed  Google Scholar 

  14. Benedict CR, Shelton B, Johnstone DE, Francis G, Breenberg B, Konstam M et al (1996) Prognostic significance of plasma norepinephrine in patients with asymptomatic left ventricular dysfunction. SOLVD Investigators. Circulation 82:1724–1729

    Google Scholar 

  15. Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS et al (1990) Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of left Ventricular Dysfunction (SOLVD). Circulation 82:1724–1729

    CAS  PubMed  Google Scholar 

  16. Rouleau JL, de Champlain J, Klein M, Bichet D, Moye L, Packer M et al (1993) Activation of neurohumoral systems in postinfarction left ventricular dysfunction. J Am Coll Cardiol 22:390–398

    Article  CAS  PubMed  Google Scholar 

  17. Hunt SA (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart association Task Force on Practice Guidelines. J Am Coll Cardiol 46:e1–e82

    Article  PubMed  Google Scholar 

  18. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Google Scholar 

  19. Ponikowski P, Chua TP, Piepoli M, Banasiak W, Anker SD, Szelemej R, Molenda W, Wrabec K, Capucci A, Coats AJ (1998) Ventilatory response to exercise correlates with impaired heart rate variability in patients with chronic congestive heart failure. Am J Cardiol 82(3):338–344

    Article  CAS  PubMed  Google Scholar 

  20. Davies LC, Francis DP, Scott AC, Ponikowski P, Piepoli M, Coats AJ (2001) Effect of altering conditions of the sequence method on baroreflex sensitivity. J Hypertens 19:1279–1287

    Article  PubMed  Google Scholar 

  21. Lanfranchi PA, Somers VK (2002) Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol 283:815–826

    Google Scholar 

  22. Lipman RD, Salisbury JK, Taylor JA (2003) Spontaneous indices are inconsistent with arterial baroreflex gain. Hypertension 42(4):481–487

    Article  CAS  PubMed  Google Scholar 

  23. Chua TP, Ponikowski PP, Harrington D, Chambers J, Coats AJ (1996) Contribution of peripheral chemoreceptors to ventilation and the effects of their suppression on exercise tolerance in chronic heart failure. Heart 76:483–489

    Article  CAS  PubMed  Google Scholar 

  24. Matveev M, Prokopova R (2008) Prognostic value of the time related autonomic balance indicator for risk evaluation of cardiovascular events in patients with ischemic heart disease. Comput Cardiol 35:201–204

    Google Scholar 

  25. Mancia G, Grassi G, Bertinieri G, Ferrari A, Zanchetti A (1984) Arterial baroreceptor control of blood pressure in man. J Auton Nerv Syst 11(2):115–124

    Article  CAS  PubMed  Google Scholar 

  26. Ponikowski P, Anker SD, Chua TP, Szelemej R, Piepoli M, Adamopoulos S, Webb-Peploe K, Harrington D, Banasiak W, Wrabec K, Coats AJ (1997) Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 79:1645–1650

    Article  CAS  PubMed  Google Scholar 

  27. Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN (1992) Correlations among time and frequency domain measures of heart period variability two weeks after acute myocardial infarction. Am J Cardiol 69:891–898

    Article  PubMed  Google Scholar 

  28. Farrell TG, Odemuyiwa O, Bashir Y, Cripps TR, Malik M, Ward DE, Camm AJ (1992) Prognostic value of baroreflex sensitivity testing after acute myocardial infarction. Heart J 67(2):129–137

    Article  CAS  Google Scholar 

  29. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, Baig W, Flapan AD, Cowley A, Prescott RJ, Neilson JM, Fox KA (1998) Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom Heart failure Evaluation and Assessment of Risk Trial. Circulation 98:1510–1516

    CAS  PubMed  Google Scholar 

  30. Osterziel KJ, Hänlein D, Willenbrock R, Eichhorn C, Luft F, Dietz R (1995) Baroreflex sensitivity and cardiovascular mortality in patients with mild to moderate heart failure. Br Heart J 73:517–522

    Article  CAS  PubMed  Google Scholar 

  31. Ponikowski P, Chua TP, Anker SD, Francis DP, Doehner W, Banasiak W et al (2001) Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation 104:544–549

    Article  CAS  PubMed  Google Scholar 

  32. Adamsom PB, Kleckner KJ, VanHout WL, Srinivasan S, Abraham WT (2003) Cardiac resynchronization therapy improves heart rate variability In patients with symptomatic heart failure. Circulation 108:266–269

    Article  Google Scholar 

  33. Landolina M, Gasparini M, Lunati M, Santini M, Rordorf R, Vincenti A, Diotallevi P, Montenero AS, Bonanno C, De Santo T, Valsecchi S, Padeletti L (2008) Heart rate variability monitored by the implanted device predicts response to CRT and long-term clinical outcome In patients with advanced heart failure. Eur J Heart Fail 10:1073–1079

    Article  PubMed  Google Scholar 

  34. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC (2006) Clinical presentation, management and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) database. J Am Coll Cardiol 47:76–84

    Article  PubMed  Google Scholar 

  35. Grassi G, Mancia G (1994) Neurohumoral mechanisms in cardiocirculatory decompensation. Ann Ital Med Int 9:61S–67S

    PubMed  Google Scholar 

  36. Aronson D, Mittleman MA, Burger AJ (2004) Measures of heart period variability as predictors of mortality in hospitalized patients with decompensated congestive heart failure. Am J Cardiol 93(1):59–63

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa A. Jankowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rydlewska, A., Jankowska, E.A., Ponikowska, B. et al. Changes in autonomic balance in patients with decompensated chronic heart failure. Clin Auton Res 21, 47–54 (2011). https://doi.org/10.1007/s10286-010-0089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-010-0089-z

Keywords

Navigation