Skip to main content
Log in

Sympathetic cardiovascular hyperactivity precedes brain death

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Objective

The time preceding brain death is associated with complex dysregulation including autonomic dysfunction that may compromise organ perfusion, thus inducing final organ failure. In this study, we assessed autonomic function in patients prior to brain death.

Methods

In 5 patients (2 women, median 60 years, age range 52–75 years) with fatal cerebral hemorrhage or stroke and negative prognosis, we monitored RR-intervals (RRI), systolic and diastolic blood pressure (BP), and oxygen saturation. Adjustment of mechanical ventilation remained constant. We assessed autonomic function from spectral powers of RRI and BP in the mainly sympathetic low- (LF, 0.04–0.15 Hz) and parasympathetic high-frequencies (HF, 0.15–0.5 Hz), and calculated the RRI-LF/HF-ratio as index of sympathovagal balance. Three patients required norepinephrine (0.5–1.6 mg/h) for up to 72 h to maintain organ perfusion. Norepinephrine was reduced to 0.2–0.5 mg/h within 2 h before brain death was diagnosed according to the criteria of the German Medical Association. Wilcoxon test compared average values of ten 2-min epochs determined 2–3 h (measurement 1) and 1 h (measurement 2) before brain death.

Results

We found higher systolic (127.3 ± 15.9 vs. 159.4 ± 44.8 mmHg) and diastolic BP (60.1 ± 15.6 vs. 74.0 ± 15.2 mmHg), RRI-LF/HF-ratio (1.2 ± 1.6 vs. 3.9 ± 4.0), and BP-LF-powers (2.7 ± 4.8 vs. 23.1 ± 28.3 mmHg2) during measurement 2 than during measurement 1 (p < 0.05).

Conclusions

The increase in BPs, in sympathetically mediated BP-LF-powers, and in the RRI-LF/HF-ratio suggests prominent sympathetic activity shortly before brain death. Prefinal sympathetic hyperactivity might cause final organ failure with catecholamine-induced tissue damage which impedes post-mortem organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smith M (2004) Physiologic changes during brain stem death—lessons for management of the organ donor. J Heart Lung Transplant 23:S217–S222

    Article  PubMed  Google Scholar 

  2. Lowensohn RI, Weiss M, Hon EH (1977) Heart-rate variability in brain-damaged adults. Lancet 1:626–628

    Article  CAS  PubMed  Google Scholar 

  3. Baillard C, Vivien B, Mansier P, Mangin L, Jasson S, Riou B, Swynghedauw B (2002) Brain death assessment using instant spectral analysis of heart rate variability. Crit Care Med 30:306–310

    Article  PubMed  Google Scholar 

  4. Goldstein B, DeKing D, DeLong DJ, Kempski MH, Cox C, Kelly MM, Nichols DD, Woolf PD (1993) Autonomic cardiovascular state after severe brain injury and brain death in children. Crit Care Med 21:228–233

    Article  CAS  PubMed  Google Scholar 

  5. Wissenschaftlicher Beirat der Bundesärztekammer (1997) Richtlinien zur Feststellung des Hirntodes. Dritte Fortschreibung 1997 mit Ergänzungen gemäß Transplantationsgesetz (tpg). Deutsches Ärzteblatt 95:A1861–A1868

    Google Scholar 

  6. Besser R (2001) Empfehlungen der Deutschen Gesellschaft für klinische Neurophysiologie (Deutsche EEG-Gesellschaft) zur Bestimmung des Hirntodes. Klin Neurophysiol 32:39–41

    Article  Google Scholar 

  7. Rudiger H, Klinghammer L, Scheuch K (1999) The trigonometric regressive spectral analysis—a method for mapping of beat-to-beat recorded cardiovascular parameters onto frequency domain in comparison with fourier transformation. Comput Methods Programs Biomed 58:1–15

    Article  CAS  PubMed  Google Scholar 

  8. Task force of the European Society Of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Google Scholar 

  9. Saul JP, Berger RD, Chen MH, Cohen RJ (1989) Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia. Am J Physiol 256:H153–H161

    CAS  PubMed  Google Scholar 

  10. Ziemssen T, Gasch J, Ruediger H (2008) Influence of ECG sampling frequency on spectral analysis of RR intervals and baroreflex sensitivity using the EUROBAVAR data set. J Clin Monit Comput 22:159–168

    Article  PubMed  Google Scholar 

  11. Laude D, Elghozi JL, Girard A, Bellard E, Bouhaddi M, Castiglioni P, Cerutti C, Cividjian A, Di Rienzo M, Fortrat JO, Janssen B, Karemaker JM, Lefthériotis G, Parati G, Persson PB, Porta A, Quintin L, Regnard J, Rüdiger H, Stauss HM (2004) Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). Am J Physiol Regul Integr Comp Physiol 286:R226–R231

    CAS  PubMed  Google Scholar 

  12. Hilz MJ (2002) Quantitative autonomic functional testing in clinical trials. In: Brown R, Bolton C, Aminoff M (eds) Neuromuscular function and disease. W.B. Saunders, Philadelphia, pp 1899–1929

    Google Scholar 

  13. Beloeil H, Mazoit JX, Benhamou D, Duranteau J (2005) Norepinephrine kinetics and dynamics in septic shock and trauma patients. Br J Anaesth 95:782–788

    Article  CAS  PubMed  Google Scholar 

  14. Chen EP, Bittner HB, Kendall SW, Van Trigt P (1996) Hormonal and hemodynamic changes in a validated animal model of brain death. Crit Care Med 24:1352–1359

    Article  CAS  PubMed  Google Scholar 

  15. Shivalkar B, Van Loon J, Wieland W, Tjandra-Maga TB, Borgers M, Plets C, Flameng W (1993) Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation 87:230–239

    CAS  PubMed  Google Scholar 

  16. Baroldi G, Di Pasquale G, Silver MD, Pinelli G, Lusa AM, Fineschi V (1997) Type and extent of myocardial injury related to brain damage and its significance in heart transplantation: a morphometric study. J Heart Lung Transplant 16:994–1000

    CAS  PubMed  Google Scholar 

  17. Pennefather SH, Bullock RE, Dark JH (1993) The effect of fluid therapy on alveolar arterial oxygen gradient in brain-dead organ donors. Transplantation 56:1418–1422

    Article  CAS  PubMed  Google Scholar 

  18. Novitzky D, Rose AG, Cooper DK (1988) Injury of myocardial conduction tissue and coronary artery smooth muscle following brain death in the baboon. Transplantation 45:964–966

    Article  CAS  PubMed  Google Scholar 

  19. White M, Wiechmann RJ, Roden RL, Hagan MB, Wollmering MM, Port JD, Hammond E, Abraham WT, Wolfel EE, Lindenfeld J et al (1995) Cardiac beta-adrenergic neuroeffector systems in acute myocardial dysfunction related to brain injury. Evidence for catecholamine-mediated myocardial damage. Circulation 92:2183–2189

    CAS  PubMed  Google Scholar 

  20. Cooper DK, Novitzky D, Wicomb WN (1989) The pathophysiological effects of brain death on potential donor organs, with particular reference to the heart. Ann R Coll Surg Engl 71:261–266

    CAS  PubMed  Google Scholar 

  21. Rapenne T, Moreau D, Lenfant F, Boggio V, Cottin Y, Freysz M (2000) Could heart rate variability analysis become an early predictor of imminent brain death? A pilot study. Anesth Analg 91:329–336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the International Brain Research Foundation, IBRF, Inc., Edison, NJ, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Marthol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marthol, H., Intravooth, T., Bardutzky, J. et al. Sympathetic cardiovascular hyperactivity precedes brain death. Clin Auton Res 20, 363–369 (2010). https://doi.org/10.1007/s10286-010-0072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-010-0072-8

Keywords

Navigation