Skip to main content
Log in

A role for succinate dehydrogenase genes in low chemoresponsiveness to hypoxia?

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

The detection of hypoxia by the carotid bodies elicits a ventilatory response of utmost importance for tolerance to high altitude. Germline mutations in three genes encoding subunit B, C and D of succinate dehydrogenase (SDHB, SDHC and SDHD) have been associated with paragangliomas of the carotid body. We hypothesized that SDH dysfunction within the carotid body could result in low chemoresponsiveness and intolerance to high altitude. The frequency of polymorphisms of SDHs, hypoxia-inducible factor type 1 (HIF1α) and angiotensin converting enzyme (ACE) genes was compared between 40 subjects with intolerance to high altitude and a low hypoxic ventilatory response at exercise (HVRe ≤ 0.5 ml min−1 kg−1; HVR− group) and 41 subjects without intolerance to high altitude and a high HVRe (≥0.80 ml min−1 kg−1; HVR+). We found no significant association between low or high HVRe and (1) the allele frequencies for nine single nucleotide polymorphisms (SNPs) in the SDHD and SDHB genes, (2) the ACE insertion/deletion polymorphism and (3) four SNPs in the HIF1α gene. However, a marginal significant association was found between the synonymous polymorphism c.18A>C of the SDHB gene and chemoresponsiveness: 8/40 (20%) in the HVR− group and 3/41 (7%) in the HVR+ group (p = 0.12). A principal component analysis showed that no subject carrying the 18C allele had both high ventilatory and cardiac response to hypoxia. In conclusion, no clear association was found between gene variants involved in oxygen sensing and chemoresponsiveness, although some mutations in the SDHB and SDHD genes deserve further investigations in a larger population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aldashev AA, Sarybaev AS, Sydykov AS, Kalmyrzaev BB, Kim EV, Mamanova LB, Maripov R, Kojonazarov BK, Mirrakhimov MM, Wilkins MR, Morrell NW (2002) Characterization of high-altitude pulmonary hypertension in the Kyrgyz: association with angiotensin-converting enzyme genotype. Am J Respir Crit Care Med 166:1396–1402

    Article  PubMed  Google Scholar 

  2. Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O, Chamontin B, Delemer B, Giraud S, Murat A, Niccoli-Sire P, Richard S, Rohmer V, Sadoul JL, Strompf L, Schlumberger M, Bertagna X, Plouin PF, Jeunemaitre X, Gimenez-Roqueplo AP (2005) Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 23:8812–8818

    Article  CAS  PubMed  Google Scholar 

  3. Appenzeller O, Minko T, Qualls C, Pozharov V, Gamboa J, Gamboa A, Wang Y (2006) Gene expression, autonomic function and chronic hypoxia:lessons from the Andes. Clin Auton Res 16:217–222

    Article  PubMed  Google Scholar 

  4. Astrom K, Cohen JE, Willett-Brozick JE, Aston CE, Baysal BE (2003) Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum Genet 113:228–237

    Article  PubMed  Google Scholar 

  5. Basnyat B, Murdoch DR (2003) High-altitude illness. Lancet 361:1967–1974

    Article  PubMed  Google Scholar 

  6. Baysal B (2006) A phenotypic perspective on mammalian oxygen sensor candidates. Ann N Y Acad Sci 1073:221–233

    Article  CAS  PubMed  Google Scholar 

  7. Bigham AW, Kiyamu M, León-Velarde F, Parra EJ, Rivera-Ch M, Shriver MD, Brutsaert TD (2008) Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Alt Med Biol 9:167–178

    Article  CAS  PubMed  Google Scholar 

  8. Brugniaux JV, Schmitt L, Robach P, Jeanvoine H, Zimmermann H, Nicolet G, Duvallet A, Fouillot J-P, Richalet J-P (2006) Living high-training low: tolerance and acclimatization in elite endurance athletes. Eur J Appl Physiol 96:66–77

    Article  PubMed  Google Scholar 

  9. Burtscher M, Flatz M, Faulhaber M (2004) Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia. High Alt Med Biol 5:335–340

    PubMed  Google Scholar 

  10. Dehnert C, Weymann J, Montgomery HE, Woods D, Maggiorini M, Scherrer U, Gibbs JS, Bärtsch P (2002) No association between high-altitude tolerance and the ACE I/D gene polymorphism. Med Sci Sports Exerc 34:1928–1933

    Article  CAS  PubMed  Google Scholar 

  11. Droma Y, Hanaoka M, Ota M, Katsuyama Y, Koizumi T, Fujimoto K, Kobayashi T, Kubo K (2002) Positive association of the endothelial nitric oxide synthase gene polymorphisms with high-altitude pulmonary edema. Circulation 106:826–830

    Article  CAS  PubMed  Google Scholar 

  12. Gao W, Gao Y, Zhang G, Song L, Sun B, Shi J (2005) Hypoxia-induced expression of HIF-1alpha and its target genes in umbilical venous endothelial cells of Tibetans and immigrant Han. Comp Biochem Physiol C Toxicol Pharmaco 141:93–100

    Article  Google Scholar 

  13. Gimenez-Roqueplo AP, Burnichon N, Amar L, Favier J, Jeunemaitre X, Plouin PF (2008) Recent advances in the genetics of phaeochromocytoma and functional paraganglioma. Clin Exp Pharmacol Physiol 35:376–379

    Article  CAS  PubMed  Google Scholar 

  14. Hackett PH, Roach RC (2004) High altitude cerebral edema. High Alt Med Biol 5:136–146

    Article  PubMed  Google Scholar 

  15. Hanaoka M, Droma Y, Hotta J, Matsuzawa Y, Kobayashi T, Kubo K, Ota M (2003) Polymorphisms of the tyrosine hydroxylase gene in subjects susceptible to high-altitude pulmonary edema. Chest 123:54–58

    Article  CAS  PubMed  Google Scholar 

  16. Hohenhaus E, Paul A, McCullough RE, Kucherer H, Bartsch P (1995) Ventilatory and pulmonary vascular response to hypoxia and susceptibility to high altitude pulmonary oedema. Eur Respir J 8:1825–1833

    Article  CAS  PubMed  Google Scholar 

  17. Hotta J, Hanaoka M, Droma Y, Katsuyama Y, Ota M, Kobayashi T (2004) Polymorphisms of renin-angiotensin system genes with high-altitude pulmonary edema in Japanese subjects. Chest 126:825–830

    Article  CAS  PubMed  Google Scholar 

  18. Huang J, Lemire BD (2009) Mutations in the C. elegans succinate dehydrogenase iron–sulfur subunit promote superoxide generation and premature aging. J Mol Biol 3:559–569

    Article  Google Scholar 

  19. Jedlickova K, Stockton DW, Chen H, Stray-Gundersen J, Witkowski S, Ri-Li G, Jelinek J, Levine BD, Prchal JT (2003) Search for genetic determinants of individual variability of the erythropoietin response to high altitude. Blood Cells Mol Dis 31:175–182

    Article  CAS  PubMed  Google Scholar 

  20. Koehle MS, Wang P, Guenette JA, Rupert JL (2006) No association between variants in the ACE and angiotensin II receptor 1 genes and acute mountain sickness in Nepalese pilgrims to the Janai Purnima Festival at 4380 m. High Alt Med Biol 7:281–289

    Article  CAS  PubMed  Google Scholar 

  21. León-Velarde F, Mejía O (2008) Gene expression in chronic high altitude diseases. High Alt Med Biol 9:130–139

    Article  PubMed  Google Scholar 

  22. Mejía OM, Prchal J, León-Velarde F, Hurtado A, Stockton DW (2005) Genetic association analysis of chronic mountain sickness in an Andean high-altitude population. Heamatologica 90:13–19

    Google Scholar 

  23. Mortimer H, Patel S, Peacock AJ (2004) The genetic basis of high-altitude pulmonary oedema. Pharmacol Ther 101:183–192

    Article  CAS  PubMed  Google Scholar 

  24. Richalet JP, Kéromès A, Dersch B, Corizzi F, Mehdioui H, Pophillat B, Chardonnet H, Tassery F, Herry JP, Rathat C, Chaduteau C, Darnaud B (1988) Caractéristiques physiologiques des alpinistes de haute altitude. Sci Sport 3:89–108

    Article  Google Scholar 

  25. Richalet JP (1995) High-altitude pulmonary oedema. Still a place for controversy? Thorax 50:923–929

    Article  CAS  PubMed  Google Scholar 

  26. Richalet JP, Herry JP (2006) Médecine de l’alpinisme et des sports de montagne, 4th edn. Masson, Paris

  27. Rivera-Ch M, Huicho L, Bouchet P, Richalet JP, León-Velarde F (2008) Effect of acetazolamide on ventilatory response in subjects with chronic mountain sickness. Respir Physiol Neurobiol 162:184–189

    Article  CAS  PubMed  Google Scholar 

  28. Rodríguez-Cuevas S, López-Garza J, Labastida-Almendaro S (1998) Carotid body tumors in inhabitants of altitudes higher than 2000 meters above sea level. Head Neck 20:374–378

    Article  PubMed  Google Scholar 

  29. Rupert JL, Koehle MS (2006) Evidence for a genetic basis for altitude-related illness. High Alt Med Biol 7:150–167

    Article  CAS  PubMed  Google Scholar 

  30. Saxena S, Kumar R, Madan T, Gupta V, Muralidhar K, Sarma PU (2005) Association of polymorphisms in pulmonary surfactant protein A1 and A2 genes with high-altitude pulmonary edema. Chest 128:1611–1619

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki K, Kizaki T, Hitomi Y, Nukita M, Kimoto K, Miyazawa N, Kobayashi K, Ohnuki Y, Ohno H (2003) Genetic variation in hypoxia-inducible factor 1alpha and its possible association with high altitude adaptation in Sherpas. Med Hypotheses 61:385–389

    Article  CAS  PubMed  Google Scholar 

  32. The Lake Louise Consensus on The Definition and Quantification of Altitude Illness (1992) In: Sutton JR, Coates G, Houston CS (eds) Hypoxia and mountain medicine. Queen City Printers Inc., Burlington, pp 327–330

  33. Thompson J, Raitt J, Hutchings L, Drenos F, Bjargo E, Loset A, Grocott M, Montgomery H, Caudwell Xtreme Everest Research Group (2007) Angiotensin-converting enzyme genotype and successful ascent to extreme high altitude. High Alt Med Biol 8:278–285

    Article  CAS  PubMed  Google Scholar 

  34. Williams AG, Rayson MP, Jubb M, World M, Woods DR, Hayward M, Martin J, Humphries SE, Montgomery HE (2000) The ACE gene and muscle performance. Nature 403:614

    Article  CAS  PubMed  Google Scholar 

  35. Zhou F, Wang F, Li F, Yuan J, Zeng H, Wei Q, Tanguay RM, Wu T (2005) Association of hsp70-2 and hsp-hom gene polymorphisms with risk of acute high-altitude illness in a Chinese population. Cell Stress Chaperones 10:349–356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the nurses of the Centre d’Investigations Cliniques and the technicians of the molecular genetic laboratory at the Hôpital Européen Georges Pompidou for their technical support. This study was supported by a grant delivered by the Société Française d’Hypertension Artérielle and promoted by the Société Française de Cardiologie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Richalet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richalet, JP., Gimenez-Roqueplo, AP., Peyrard, S. et al. A role for succinate dehydrogenase genes in low chemoresponsiveness to hypoxia?. Clin Auton Res 19, 335–342 (2009). https://doi.org/10.1007/s10286-009-0028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-009-0028-z

Keywords

Navigation