Skip to main content
Log in

Interaction between central-peripheral chemoreflexes and cerebro-cardiovascular control

  • RESEARCH ARTICLE
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

We investigated the interaction between hypoxia and hypercapnia on ventilation and on cerebro-cardio-vascular control. A group of 12 healthy subjects performed rebreathing tests to determine the ventilatory response to hypoxia, at different levels of carbon dioxide (CO2), and to normoxic hypercapnia.Oxygen saturation (SaO2), end-tidal CO2 (et-CO2), minute ventilation, blood pressure, R-R interval and mid-cerebral artery flow velocity (MCFV) were continuously recorded. The hypoxic ventilatory response significantly increased under hypercapnia and decreased under hypocapnia (slopes L/min/% Sa O2: –0.33±0.05, –0.74±0.02 and –1.59±0.3, p<0.0001, in hypocapnia, normocapnia and hypercapnia, respectively). At similar degrees of ventilation, MCFV increased more markedly during normocapnic hypoxia than normoxic hypercapnia; the slopes linking MCFV to hypoxia remained unchanged at increasing levels of et-CO2, whereas the regression lines were shifted upward. The R-R interval decreased more markedly during normocapnic hypoxia than normoxic hypercapnia and the arterial baroreflex sensitivity was decreased only by hypoxia. Cardiovascular responses to hypoxia were not affected by different levels of et-CO2. We conclude that concomitant hypoxia and hypercapnia, while increasing ventilation synergistically, exert an additive effect on cerebral blood flow. Increased sympathetic activity (and reduced baroreflex sensitivity) is one of the mechanisms by which hypoxia stimulates cardiac sympathetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abboud FM, MD Thames (1984) Interaction of cardiovascular reflexes in the circulatory control. In: Handbook of Physiology, The cardiovascular System. Peripheral Circulation and Organ Blood Flow. sect 2, vol III, part 2. Am Physiol Soc, Bethesda, pp 675–753

  2. Ainslie PN, Poulin MJ (2004) Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol 97:149–159

    Article  PubMed  Google Scholar 

  3. Bernardi L, Gabutti A, Porta C, Spicuzza L (2001) Slow breathing reduces chemoreflex response to hypoxia and hypercapnia, and increases baroreflex sensitivity. J Hypertens 19:2221–2229

    Article  PubMed  CAS  Google Scholar 

  4. Bernardi L, Hilz M, Stemper B, Passino C, Welsch G, Axelrod FB (2003) Respiratory and cerebrovascular responses to hypoxia and hypercapnia in familial dysautonomia. Am J Respir Crit Care Med 167:141–149

    Article  PubMed  Google Scholar 

  5. Bernardi L, Spadacini G, Bellwon J, Hajric R, Roskamm H, Frey AW (1998) Effect of breathing rate on oxygen saturation and exercise performance in chronic heart failure. Lancet 351:1308–1311

    Article  PubMed  CAS  ISI  Google Scholar 

  6. Brian JE, Faraci FM, Heistad DD (1996) Recent insights into the regulation of cerebral circulation. Clin Exp Pharmacol Physiol 23:449–457

    Article  PubMed  CAS  Google Scholar 

  7. Bristow JD, Brown EB, Cunningham JDC, Goode RC, Howson MO, Sleight P (1971) The effects of hypercapnia, hypoxia and ventilation on the baroreflex regulation of the pulse interval. J Physiol 216:281–302

    PubMed  CAS  Google Scholar 

  8. Bristow JD, Brown EB, Cunningham JDC, Howson MH, Lee MJR, Pickering TO, Sleight P (1974) The effects of raising alveolar PCO2 and ventilation separately and together on the sensitivity and setting of the baroreceptor cardiodepressor reflex in man. J Physiol 243:401–425

    PubMed  CAS  Google Scholar 

  9. Choi JY, Morris JC, Hsu CY (1998) Aging and cerebrovascular disease. Neurol Clin 16:687–711

    Article  PubMed  CAS  Google Scholar 

  10. Chugh SS, Chua TP, Coats AJ (1996) Peripheral chemoreflex in chronic heart failure: friend and foe. Am Heart J 132:900–904

    Article  PubMed  CAS  Google Scholar 

  11. Corne S, Webster K, Younes M (2003) Hypoxic respiratory response during acute stable hypocapnia. Am J Respir Crit Care Med 167:1193–1199

    Article  PubMed  Google Scholar 

  12. Ellingsen I, Hauge A, Nicolaysen G, Thoresen M, Walloe L (1987) Changes in human cerebral flow due to step changes in PAO2 and PACO2. Acta Physiol Scand 129:157–153

    PubMed  CAS  Google Scholar 

  13. Fatemian M, Robbins PA (2001) Selected contribution: chemoreflex responses to CO2 before and after an 8-h exposure to hypoxia in humans. J Appl Physiol 90:1607–1614

    PubMed  CAS  Google Scholar 

  14. Francis DA, Coats JS, Ponikowski P (2000) Chemoreflex-Baroreflex interactions in cardiovascular disease. In: Bradley TD, Floras JS (eds) Sleep Apnea. Implication in cardiovascular and cerebrovascular disease. Marcel Dekker, New York, pp 261–283

  15. Gur AY, Bova I, Bornstein NM (1996) Is impaired cerebral vasomotor reactivity a predictive factor of stroke in asymptomatic patients? Stroke 27:2188–2190

    PubMed  CAS  ISI  Google Scholar 

  16. Hackett PH, Roach RC (2001) Highaltitude illness. N Engl J Med 345:107–114

    Article  PubMed  CAS  Google Scholar 

  17. Halliwill JR, Minson CT (2002) Effect of hypoxia on arterial baroreflex control of heart rate and muscle nerve activity in humans. J Appl Physiol 93:857–864

    PubMed  Google Scholar 

  18. Heistad DD, Abboud FM, Mark AL, Schnid PG (1974) Interaction of baroreceptor and chemoreceptor reflexes: modulation of the chemoreceptor reflex by changes in baroreceptor activity. J Clin Invest 53:1226–1236

    Article  PubMed  CAS  Google Scholar 

  19. Imray CH, Brearey S, Clarke T, Hale D, Morgan J, Walsh S, Wright AD (2000) Cerebral oxygenation at high altitude and the response to carbon dioxide, hyperventilation and oxygen. The Birmingham Medical Research Expeditionary Society. Clin Sci (Lond) 98:159–164

    Article  PubMed  CAS  Google Scholar 

  20. Jensen JB, Wright AD, Lassen NA, Harvey TC, Winterborn MH, Raichle ME, Bradwell AR (1990) Cerebral blood flow in acute mountain sickness. J Appl Physiol 69:430–433

    PubMed  CAS  Google Scholar 

  21. Jordan J, Shannon JR,Diedrich A, Black B, Costa F, Robertson D, Biaggioni I (2000) Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusions in humans. Hypertension 36:383–388

    PubMed  CAS  ISI  Google Scholar 

  22. Kemmotsu O, Ueda M, Otsuka H, Yamamura T, Winter DC, Eckerle JS (1991) Arterial tonometry for noninvasive, continuous blood pressure monitoring during anesthesia. Anesthesiology 75:333–340

    Article  PubMed  CAS  ISI  Google Scholar 

  23. Kongo M, Yamamoto R, Kobayashi M, Nosaka S (1999) Hypoxia inhibits baroreflex vagal bradycardia via a central action in anaesthetized rats. Exp Physiol 84:47–56

    PubMed  CAS  Google Scholar 

  24. LeMarbre G, Stauber S, Khayat RN, Puleo DS, Skatrud JB, Morgan BJ (2003) Baroreflex-induced sympathetic activation does not alter cerebrovascular CO2 responsiveness in humans. J Physiol 551:609–616

    Article  PubMed  CAS  Google Scholar 

  25. Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492

    PubMed  CAS  ISI  Google Scholar 

  26. Massik J, Jones MD Jr, Miyabe M, Tang YL, Hudak ML, Koehler RC, Traystman RJ (1989) Hypercapnia and response of cerebral blood flow to hypoxia in newborn lambs. J Appl Physiol 66:1065–1070

    Article  PubMed  CAS  Google Scholar 

  27. Milic-Emili J (1975) Clinical methods for assessing the ventilatory response to carbon dioxide and hypoxia. N Engl J Med 10:864–865

    Google Scholar 

  28. Ponikowski P, Chua TP, Piepoli M, Ondusova D, Webb-Peploe K, Harrington D, Anker SD, Volterrani M, Colombo R, Mazzuero G, Giordano A, Coats AJ (1997) Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation 96:2586–2594

    PubMed  CAS  ISI  Google Scholar 

  29. Ponikowski P, Francis DP, Piepoli MF, Davies LC, Chua TP, Davos CH, Florea V, Banasiak W, Poole-Wilson PA, Coats AJ, Anker SD (2001) Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation 102:967–972

    Google Scholar 

  30. Poulin MJ, Fatemian M, Tansley JG, O’Connor DF, Robbins PA (2002) Changes in cerebral blood flow during and after 48 h of both isocapnic and poikilocapnic hypoxia in humans. Exp Physiol 87:633–642

    Article  PubMed  Google Scholar 

  31. Quint SR, Scremin OU, Sonnenschein RR, Rubinstein EH (1980) Enhancement of cerebrovascular effect of CO2 by hypoxia. Stroke 3:286–289

    Google Scholar 

  32. Somers VK, Mark AL, Zavala DC, Abboud FM (1989) Influence of ventilation and hypocapnia on sympathetic responses to hypoxia in normal humans. J Appl Physiol 67:2095–2100

    PubMed  CAS  Google Scholar 

  33. Somers VK, Mark AL, Zavala DC, Abboud FM (1989) Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol 67:2101–2106

    PubMed  CAS  Google Scholar 

  34. Somers VK, Mark AL, Abboud FM (1991) Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest 87:1953–1975

    Article  PubMed  CAS  Google Scholar 

  35. Spicuzza L, Gabutti A, Porta A, Montana N, Bernardi L (2000) Yoga and chemoreflex response to hypoxia and hypercapnia. Lancet 356:1495–1496

    Article  PubMed  CAS  ISI  Google Scholar 

  36. Vetner SF, Priano LL, Rutheford JD, Manders WT (1980) Sympathetic regulation of the cerebral circulation by the carotid chemoreceptors reflex. Am J Physiol 238:H594–H598

    Google Scholar 

  37. Xie A, Skatrud JB, Puleo DS, Morgan BJ (2001) Exposure to hypoxia produces long-lasting sympathetic activation in humans. J Appl Physiol 91:1555–1562

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Bernardi MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spicuzza, L., Porta, C., Bramanti, A. et al. Interaction between central-peripheral chemoreflexes and cerebro-cardiovascular control. Clin Auton Res 15, 373–381 (2005). https://doi.org/10.1007/s10286-005-0284-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-005-0284-5

Key words

Navigation