Skip to main content

Advertisement

Log in

OralEpitheliumDB: A Dataset for Oral Epithelial Dysplasia Image Segmentation and Classification

  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

Early diagnosis of potentially malignant disorders, such as oral epithelial dysplasia, is the most reliable way to prevent oral cancer. Computational algorithms have been used as an auxiliary tool to aid specialists in this process. Usually, experiments are performed on private data, making it difficult to reproduce the results. There are several public datasets of histological images, but studies focused on oral dysplasia images use inaccessible datasets. This prevents the improvement of algorithms aimed at this lesion. This study introduces an annotated public dataset of oral epithelial dysplasia tissue images. The dataset includes 456 images acquired from 30 mouse tongues. The images were categorized among the lesion grades, with nuclear structures manually marked by a trained specialist and validated by a pathologist. Also, experiments were carried out in order to illustrate the potential of the proposed dataset in classification and segmentation processes commonly explored in the literature. Convolutional neural network (CNN) models for semantic and instance segmentation were employed on the images, which were pre-processed with stain normalization methods. Then, the segmented and non-segmented images were classified with CNN architectures and machine learning algorithms. The data obtained through these processes is available in the dataset. The segmentation stage showed the F1-score value of 0.83, obtained with the U-Net model using the ResNet-50 as a backbone. At the classification stage, the most expressive result was achieved with the Random Forest method, with an accuracy value of 94.22%. The results show that the segmentation contributed to the classification results, but studies are needed for the improvement of these stages of automated diagnosis. The original, gold standard, normalized, and segmented images are publicly available and may be used for the improvement of clinical applications of CAD methods on oral epithelial dysplasia tissue images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data used in this study are openly available and can be used in other studies to evaluate the stages of OED analysis. The data can be acessed at: https://github.com/LIPAIGroup/OralEpitheliumDB.

References

  1. M. M. R. Krishnan, P. Shah, M. Ghosh, M. Pal, C. Chakraborty, R. R. Paul, J. Chatterjee, and A. K. Ray, “Automated characterization of sub-epithelial connective tissue cells of normal oral mucosa: Bayesian approach,” in Students’ Technology Symposium (TechSym), 2010 IEEE, pp. 44–48, IEEE, 2010.

  2. D. Kademani, Improving Outcomes in Oral Cancer: A Clinical and Translational Update. Springer Nature, 2019.

  3. J. Smith, T. Rattay, C. McConkey, T. Helliwell, and H. Mehanna, “Biomarkers in dysplasia of the oral cavity: a systematic review,” Oral oncology, vol. 45, no. 8, pp. 647–653, 2009.

    Article  CAS  PubMed  Google Scholar 

  4. T. Fonseca-Silva, M. G. Diniz, S. F. Sousa, R. S. Gomez, and C. C. Gomes, “Association between histopathological features of dysplasia in oral leukoplakia and loss of heterozygosity,” Histopathology, vol. 68, no. 3, pp. 456–460, 2016.

    Article  PubMed  Google Scholar 

  5. M. Kadaskar and N. Patil, “Image analysis of nuclei histopathology using deep learning: A review of segmentation, detection, and classification,” SN Computer Science, vol. 4, no. 5, p. 698, 2023.

    Article  Google Scholar 

  6. T. Hayakawa, V. S. Prasath, H. Kawanaka, B. J. Aronow, and S. Tsuruoka, “Computational nuclei segmentation methods in digital pathology: a survey,” Archives of Computational Methods in Engineering, vol. 28, pp. 1–13, 2021.

    Article  Google Scholar 

  7. B. Roy, P. Sarkar, and M. Gupta, “Automated nuclei analysis from digital histopathology,” in 2023 International Conference on Intelligent Systems, Advanced Computing and Communication (ISACC), pp. 1–6, IEEE, 2023.

  8. A. J. Shephard, S. Graham, S. Bashir, M. Jahanifar, H. Mahmood, A. Khurram, and N. M. Rajpoot, “Simultaneous nuclear instance and layer segmentation in oral epithelial dysplasia,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 552–561, 2021.

  9. V. Kumar, A. K. Abbas, and J. C. Aster, Robbins patologia básica. Elsevier Brasil, 9 ed., 2013.

  10. S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using deep learning: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

  11. A. Belsare and M. Mushrif, “Histopathological image analysis using image processing techniques: An overview,” Signal & Image Processing, vol. 3, no. 4, p. 23, 2012.

    Google Scholar 

  12. D. Yang, D. Xu, S. K. Zhou, B. Georgescu, M. Chen, S. Grbic, D. Metaxas, and D. Comaniciu, “Automatic liver segmentation using an adversarial image-to-image network,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 507–515, Springer, 2017.

  13. A. J. Shephard, R. M. S. Bashir, H. Mahmood, M. Jahanifar, F. Minhas, S. E. A. Raza, K. D. McCombe, S. G. Craig, J. James, J. Brooks, et al., “A fully automated and explainable algorithm for the prediction of malignant transformation in oral epithelial dysplasia,” arXiv preprint arXiv:2307.03757, 2023.

  14. D. F. dos Santos, T. A. Tosta, A. B. Silva, P. R. de Faria, B. A. Travençolo, and M. Z. do Nascimento, “Automated nuclei segmentation on dysplastic oral tissues using cnn,” in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 45–50, IEEE, 2020.

  15. R. C. Gonzalez and R. Woods, “Digital image processing,” 2018.

  16. H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for nuclei detection, segmentation, and classification in digital histopathology: a review–current status and future potential,” IEEE reviews in biomedical engineering, vol. 7, pp. 97–114, 2014.

    Article  PubMed  Google Scholar 

  17. J. Baik, Q. Ye, L. Zhang, C. Poh, M. Rosin, C. MacAulay, and M. Guillaud, “Automated classification of oral premalignant lesions using image cytometry and random forests-based algorithms,” Cellular Oncology, vol. 37, no. 3, pp. 193–202, 2014.

    Article  Google Scholar 

  18. D. K. Das, C. Chakraborty, S. Sawaimoon, A. K. Maiti, and S. Chatterjee, “Automated identification of keratinization and keratin pearl area from in situ oral histological images,” Tissue and Cell, vol. 47, no. 4, pp. 349–358, 2015.

    Article  CAS  PubMed  Google Scholar 

  19. A. B. Silva, A. S. Martins, T. A. A. Tosta, L. A. Neves, J. P. S. Servato, M. S. de Araújo, P. R. de Faria, and M. Z. do Nascimento, “Computational analysis of histological images from hematoxylin and eosin-stained oral epithelial dysplasia tissue sections,” Expert Systems with Applications, p. 116456, 2022.

  20. B. M. S. Maia, M. C. F. R. de Assis, L. M. de Lima, M. B. Rocha, H. G. Calente, M. L. A. Correa, D. R. Camisasca, and R. A. Krohling, “Transformers, convolutional neural networks, and few-shot learning for classification of histopathological images of oral cancer,” Expert Systems with Applications, p. 122418, 2023.

  21. D. Adel, J. Mounir, M. El-Shafey, Y. A. Eldin, N. El Masry, A. AbdelRaouf, and I. S. Abd Elhamid, “Oral epithelial dysplasia computer aided diagnostic approach,” in 2018 13th International Conference on Computer Engineering and Systems (ICCES), pp. 313–318, IEEE, 2018.

  22. T. Y. Rahman, “A histopathological image repository of normal epithelium of oral cavity and oral squamous cell carcinoma,” 2019.

  23. M. Amgad, H. Elfandy, H. Hussein, L. A. Atteya, M. A. Elsebaie, L. S. Abo Elnasr, R. A. Sakr, H. S. Salem, A. F. Ismail, A. M. Saad, et al., “Structured crowdsourcing enables convolutional segmentation of histology images,” Bioinformatics, vol. 35, no. 18, pp. 3461–3467, 2019.

  24. A. Mahbod, G. Schaefer, B. Bancher, C. Löw, G. Dorffner, R. Ecker, and I. Ellinger, “Cryonuseg: A dataset for nuclei instance segmentation of cryosectioned h &e-stained histological images,” Computers in biology and medicine, vol. 132, p. 104349, 2021.

    Article  PubMed  Google Scholar 

  25. N. Kumar, R. Verma, D. Anand, Y. Zhou, O. F. Onder, E. Tsougenis, H. Chen, P.-A. Heng, J. Li, Z. Hu, et al., “A multi-organ nucleus segmentation challenge,” IEEE transactions on medical imaging, vol. 39, no. 5, pp. 1380–1391, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  26. J. Gamper, N. A. Koohbanani, K. Benet, A. Khuram, and N. Rajpoot, “Pannuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification,” in European Congress on Digital Pathology, pp. 11–19, Springer, 2019.

  27. A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, K. Steiger, A. M. Schlitter, I. Esposito, and N. Navab, “Structure-preserving color normalization and sparse stain separation for histological images,” IEEE transactions on medical imaging, vol. 35, no. 8, pp. 1962–1971, 2016.

    Article  PubMed  Google Scholar 

  28. T. A. A. Tosta, P. R. de Faria, J. P. S. Servato, L. A. Neves, G. F. Roberto, A. S. Martins, and M. Z. do Nascimento, “Unsupervised method for normalization of hematoxylin-eosin stain in histological images,” Computerized Medical Imaging and Graphics, vol. 77, p. 101646, 2019.

  29. K. Takao and T. Miyakawa, “Genomic responses in mouse models greatly mimic human inflammatory diseases,” Proceedings of the National Academy of Sciences, vol. 112, no. 4, pp. 1167–1172, 2015.

    Article  ADS  CAS  Google Scholar 

  30. L. L. Peters, R. F. Robledo, C. J. Bult, G. A. Churchill, B. J. Paigen, and K. L. Svenson, “The mouse as a model for human biology: a resource guide for complex trait analysis,” Nature Reviews Genetics, vol. 8, no. 1, pp. 58–69, 2007.

    Article  CAS  PubMed  Google Scholar 

  31. N. Rosenthal and S. Brown, “The mouse ascending: perspectives for human-disease models,” Nature cell biology, vol. 9, no. 9, pp. 993–999, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. K. Hatakeyama, T. Nagashima, A. Notsu, K. Ohshima, S. Ohnami, S. Ohnami, Y. Shimoda, A. Naruoka, K. Maruyama, A. Iizuka, et al., “Mutational concordance analysis provides supportive information for double cancer diagnosis,” BMC cancer, vol. 21, pp. 1–7, 2021.

    Article  Google Scholar 

  33. W. M. S. Russell and R. L. Burch, The principles of humane experimental technique. Methuen, 1959.

  34. H. Lumerman, P. Freedman, and S. Kerpel, “Oral epithelial dysplasia and the development of invasive squamous cell carcinoma,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol. 79, no. 3, pp. 321–329, 1995.

    Article  CAS  PubMed  Google Scholar 

  35. E. Bentley, D. Jenkins, F. Campbell, and B. Warren, “How could pathologists improve the initial diagnosis of colitis? evidence from an international workshop,” Journal of Clinical pathology, vol. 55, no. 12, pp. 955–960, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. G. Elmore, G. M. Longton, P. A. Carney, B. M. Geller, T. Onega, A. N. Tosteson, H. D. Nelson, M. S. Pepe, K. H. Allison, S. J. Schnitt, et al., “Diagnostic concordance among pathologists interpreting breast biopsy specimens,” Jama, vol. 313, no. 11, pp. 1122–1132, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R. C. Davis, G. Broadwater, W.-C. Foo, C. K. Jones, L. J. Havrilesky, and S. M. Bean, “Evaluation of pelvic washing specimens in patients with endometrial cancer: Cytomorphological features, diagnostic agreement, and pathologist experience,” Cancer Cytopathology, vol. 129, no. 7, pp. 517–525, 2021.

    Article  PubMed  Google Scholar 

  38. D. J. Fischer, J. B. Epstein, T. H. Morton Jr, and S. M. Schwartz, “Interobserver reliability in the histopathologic diagnosis of oral pre-malignant and malignant lesions,” Journal of oral pathology & medicine, vol. 33, no. 2, pp. 65–70, 2004.

    Article  Google Scholar 

  39. M. Rad, M. A. Hashemipoor, A. Mojtahedi, M. R. Zarei, G. Chamani, S. Kakoei, and N. Izadi, “Correlation between clinical and histopathologic diagnoses of oral lichen planus based on modified who diagnostic criteria,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol. 107, no. 6, pp. 796–800, 2009.

    Article  PubMed  Google Scholar 

  40. P. Vennalaganti, V. Kanakadandi, J. R. Goldblum, S. C. Mathur, D. T. Patil, G. J. Offerhaus, S. L. Meijer, M. Vieth, R. D. Odze, S. Shreyas, et al., “Discordance among pathologists in the united states and europe in diagnosis of low-grade dysplasia for patients with barrett’s esophagus,” Gastroenterology, vol. 152, no. 3, pp. 564–570, 2017.

    Article  PubMed  Google Scholar 

  41. B. Cai, B. M. Ronnett, M. Stoler, A. Ferenczy, R. J. Kurman, D. Sadow, F. Alvarez, J. Pearson, H. L. Sings, E. Barr, et al., “Longitudinal evaluation of interobserver and intraobserver agreement of cervical intraepithelial neoplasia diagnosis among an experienced panel of gynecologic pathologists,” The American journal of surgical pathology, vol. 31, no. 12, pp. 1854–1860, 2007.

    Article  PubMed  Google Scholar 

  42. M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley, X. Guan, C. Schmitt, and N. E. Thomas, “A method for normalizing histology slides for quantitative analysis,” in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110, IEEE, 2009.

  43. E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color transfer between images,” IEEE Computer graphics and applications, vol. 21, no. 5, pp. 34–41, 2001.

    Article  Google Scholar 

  44. H. Farahani, J. Boschman, D. Farnell, A. Darbandsari, A. Zhang, P. Ahmadvand, S. J. Jones, D. Huntsman, M. Köbel, C. B. Gilks, et al., “Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images,” Modern Pathology, vol. 35, no. 12, pp. 1983–1990, 2022.

    Article  CAS  PubMed  Google Scholar 

  45. Z. Hameed, B. Garcia-Zapirain, J. J. Aguirre, and M. A. Isaza-Ruget, “Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network,” Scientific Reports, vol. 12, no. 1, pp. 1–21, 2022.

    Article  Google Scholar 

  46. J. T. Pontalba, T. Gwynne-Timothy, E. David, K. Jakate, D. Androutsos, and A. Khademi, “Assessing the impact of color normalization in convolutional neural network-based nuclei segmentation frameworks,” Frontiers in bioengineering and biotechnology, vol. 7, p. 300, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  47. T. A. A. Tosta, A. D. Freitas, P. R. de Faria, L. A. Neves, A. S. Martins, and M. Z. do Nascimento, “A stain color normalization with robust dictionary learning for breast cancer histological images processing,” Biomedical Signal Processing and Control, vol. 85, p. 104978, 2023.

  48. A. Janowczyk and A. Madabhushi, “Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases,” Journal of pathology informatics, vol. 7, no. 1, p. 29, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  49. H. Kang, D. Luo, W. Feng, S. Zeng, T. Quan, J. Hu, and X. Liu, “Stainnet: a fast and robust stain normalization network,” Frontiers in Medicine, vol. 8, p. 746307, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  50. P. A. Bautista and Y. Yagi, “Staining correction in digital pathology by utilizing a dye amount table,” Journal of digital imaging, vol. 28, pp. 283–294, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  51. A. Mahbod, G. Schaefer, I. Ellinger, R. Ecker, Ö. Smedby, and C. Wang, “A two-stage u-net algorithm for segmentation of nuclei in h &e-stained tissues,” in European Congress on Digital Pathology, pp. 75–82, Springer, 2019.

  52. N. S. Punn and S. Agarwal, “Inception u-net architecture for semantic segmentation to identify nuclei in microscopy cell images,” ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 16, no. 1, pp. 1–15, 2020.

  53. H. Hwang, T. D. Bui, S.-i. Ahn, and J. Shin, “Skipped-hierarchical feature pyramid networks for nuclei instance segmentation,” in 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 689–693, IEEE, 2018.

  54. X. Xie, Y. Li, M. Zhang, and L. Shen, “Robust segmentation of nucleus in histopathology images via mask r-cnn,” in International MICCAI Brainlesion Workshop, pp. 428–436, Springer, 2018.

  55. J. W. Johnson, “Automatic nucleus segmentation with mask-rcnn,” in Science and Information Conference, pp. 399–407, Springer, 2019.

  56. H. Huang, X. Feng, J. Jiang, P. Chen, and S. Zhou, “Mask rcnn algorithm for nuclei detection on breast cancer histopathological images,” International Journal of Imaging Systems and Technology, vol. 32, no. 1, pp. 209–217, 2022.

    Article  Google Scholar 

  57. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125, 2017.

  58. M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, and K. Cho, “Augmentation for small object detection,” arXiv preprint arXiv:1902.07296, 2019.

  59. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.

  60. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on computer vision, pp. 2961–2969, 2017.

  61. X. Wang, S. Han, Y. Chen, D. Gao, and N. Vasconcelos, “Volumetric attention for 3d medical image segmentation and detection,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 175–184, Springer, 2019.

  62. K. Long, L. Tang, X. Pu, Y. Ren, M. Zheng, L. Gao, C. Song, S. Han, M. Zhou, and F. Deng, “Probability-based mask r-cnn for pulmonary embolism detection,” Neurocomputing, vol. 422, pp. 345–353, 2021.

    Article  Google Scholar 

  63. S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y. W. Tsang, J. T. Kwak, and N. Rajpoot, “Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images,” Medical image analysis, vol. 58, p. 101563, 2019.

    Article  PubMed  Google Scholar 

  64. U. Schmidt, M. Weigert, C. Broaddus, and G. Myers, “Cell detection with star-convex polygons,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II 11, pp. 265–273, Springer, 2018.

  65. X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “Solov2: Dynamic and fast instance segmentation,” Advances in Neural information processing systems, vol. 33, pp. 17721–17732, 2020.

    Google Scholar 

  66. Y. Jiang, L. Chen, H. Zhang, and X. Xiao, “Breast cancer histopathological image classification using convolutional neural networks with small se-resnet module,” PloS one, vol. 14, no. 3, p. e0214587, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. H. M. Ahmad, S. Ghuffar, and K. Khurshid, “Classification of breast cancer histology images using transfer learning,” in 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 328–332, IEEE, 2019.

  68. S. M. Fati, E. M. Senan, and Y. Javed, “Early diagnosis of oral squamous cell carcinoma based on histopathological images using deep and hybrid learning approaches,” Diagnostics, vol. 12, no. 8, p. 1899, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  69. A.-u. Rahman, A. Alqahtani, N. Aldhafferi, M. U. Nasir, M. F. Khan, M. A. Khan, and A. Mosavi, “Histopathologic oral cancer prediction using oral squamous cell carcinoma biopsy empowered with transfer learning,” Sensors, vol. 22, no. 10, p. 3833, 2022.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  70. A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

  71. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

  72. H. Laxmisagar and M. Hanumantharaju, “Detection of breast cancer with lightweight deep neural networks for histology image classification,” Critical Reviews® in Biomedical Engineering, vol. 50, 2022.

  73. J.-M. Bokhorst, I. D. Nagtegaal, F. Fraggetta, S. Vatrano, W. Mesker, M. Vieth, J. van der Laak, and F. Ciompi, “Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images,” Scientific Reports, vol. 13, no. 1, p. 8398, 2023.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. S. Sadek and S. Abdel-Khalek, “Generalized \(\alpha\)-entropy based medical image segmentation,” Journal of Software Engineering and Applications, vol. 2014, 2013.

  75. K. S. Hameed, A. Banumathi, and G. Ulaganathan, “P53immunostained cell nuclei segmentation in tissue images of oral squamous cell carcinoma,” Signal, Image and Video Processing, vol. 11, no. 2, pp. 363–370, 2017.

    Article  Google Scholar 

  76. L. Gongas, A. M. Moreno, and L. M. Bravo, “Automated diagnosis of breast cancer based on histological images,” in 2018 IX International Seminar of Biomedical Engineering (SIB), pp. 1–6, IEEE, 2018.

  77. S. Hinojosa, K. G. Dhal, M. Abd Elaziz, D. Oliva, and E. Cuevas, “Entropy-based imagery segmentation for breast histology using the stochastic fractal search,” Neurocomputing, vol. 321, pp. 201–215, 2018.

  78. Ş. Öztürk and B. Akdemir, “Application of feature extraction and classification methods for histopathological image using glcm, lbp, lbglcm, glrlm and sfta,” Procedia computer science, vol. 132, pp. 40–46, 2018.

    Article  Google Scholar 

  79. T. Haryanto, A. Pratama, H. Suhartanto, A. Murni, K. Kusmardi, and J. Pidanič, “Multipatch-glcm for texture feature extraction on classification of the colon histopathology images using deep neural network with gpu acceleration,” Journal of Computer Science, volume Volume 16, issue: No. 3, 2020.

  80. A. Kleppe, F. Albregtsen, L. Vlatkovic, M. Pradhan, B. Nielsen, T. S. Hveem, H. A. Askautrud, G. B. Kristensen, A. Nesbakken, J. Trovik, et al., “Chromatin organisation and cancer prognosis: a pan-cancer study,” The Lancet Oncology, vol. 19, no. 3, pp. 356–369, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. S. Graham, M. Shaban, T. Qaiser, N. A. Koohbanani, S. A. Khurram, and N. Rajpoot, “Classification of lung cancer histology images using patch-level summary statistics,” in Medical Imaging 2018: Digital Pathology, vol. 10581, p. 1058119, International Society for Optics and Photonics, 2018.

  82. S. Alinsaif and J. Lang, “Texture features in the shearlet domain for histopathological image classification,” BMC Medical Informatics and Decision Making, vol. 20, no. 14, pp. 1–19, 2020.

    Google Scholar 

  83. I. Gupta, S. R. Nayak, S. Gupta, S. Singh, K. Verma, A. Gupta, and D. Prakash, “A deep learning based approach to detect idc in histopathology images,” Multimedia Tools and Applications, vol. 81, no. 25, pp. 36309–36330, 2022.

    Article  Google Scholar 

  84. J. S. Cramer, “The origins of logistic regression,” 2002.

  85. L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.

    Article  Google Scholar 

  86. C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, pp. 273–297, 1995.

    Article  Google Scholar 

  87. R. Karthik and R. Menaka, “A multi-scale approach for detection of ischemic stroke from brain mr images using discrete curvelet transformation,” Measurement, vol. 100, pp. 223–232, 2017.

    Article  ADS  Google Scholar 

  88. M. G. Ribeiro, L. A. Neves, M. Z. do Nascimento, G. F. Roberto, A. S. Martins, and T. A. A. Tosta, “Classification of colorectal cancer based on the association of multidimensional and multiresolution features,” Expert Systems With Applications, vol. 120, pp. 262–278, 2019.

  89. A. B. Silva, C. I. De Oliveira, D. C. Pereira, T. A. Tosta, A. S. Martins, A. M. Loyola, S. V. Cardoso, P. R. De Faria, L. A. Neves, and M. Z. Do Nascimento, “Assessment of the association of deep features with a polynomial algorithm for automated oral epithelial dysplasia grading,” in 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), vol. 1, pp. 264–269, IEEE, 2022.

  90. K. Liu, Q. Chen, and G.-H. Huang, “An efficient feature selection algorithm for gene families using nmf and relieff,” Genes, vol. 14, no. 2, p. 421, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. P. V. Tran, “A fully convolutional neural network for cardiac segmentation in short-axis mri,” arXiv preprint arXiv:1604.00494, 2016.

  92. Z. Ma, X. Wu, Q. Song, Y. Luo, Y. Wang, and J. Zhou, “Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut,” Experimental and therapeutic medicine, vol. 16, no. 3, pp. 2511–2521, 2018.

    PubMed  PubMed Central  Google Scholar 

  93. M. C. Balkenhol, D. Tellez, W. Vreuls, P. C. Clahsen, H. Pinckaers, F. Ciompi, P. Bult, and J. A. van der Laak, “Deep learning assisted mitotic counting for breast cancer,” Laboratory investigation, vol. 99, no. 11, pp. 1596–1606, 2019.

    Article  PubMed  Google Scholar 

  94. F. Marliot, X. Chen, A. Kirilovsky, T. Sbarrato, C. El Sissy, L. Batista, M. Van den Eynde, N. Haicheur-Adjouri, M.-G. Anitei, A.-M. Musina, et al., “Analytical validation of the immunoscore and its associated prognostic value in patients with colon cancer,” Journal for immunotherapy of cancer, vol. 8, no. 1, 2020.

  95. D. Marti-Aguado, A. Rodríguez-Ortega, C. Mestre-Alagarda, M. Bauza, E. Valero-Pérez, C. Alfaro-Cervello, S. Benlloch, J. Pérez-Rojas, A. Ferrández, P. Alemany-Monraval, et al., “Digital pathology: accurate technique for quantitative assessment of histological features in metabolic-associated fatty liver disease,” Alimentary Pharmacology & Therapeutics, vol. 53, no. 1, pp. 160–171, 2021.

    Article  CAS  Google Scholar 

  96. G. Zanotto, P. Liebesny, M. Barrett, H. Zlotnick, A. Grodzinsky, and D. Frisbie, “Trypsin pre-treatment combined with growth factor functionalized self-assembling peptide hydrogel improves cartilage repair in rabbit model,” Journal of Orthopaedic Research®, vol. 37, no. 11, pp. 2307–2315, 2019.

  97. J. M. Cameron, C. Rinaldi, H. J. Butler, M. G. Hegarty, P. M. Brennan, M. D. Jenkinson, K. Syed, K. M. Ashton, T. P. Dawson, D. S. Palmer, et al., “Stratifying brain tumour histological sub-types: The application of atr-ftir serum spectroscopy in secondary care,” Cancers, vol. 12, no. 7, p. 1710, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. R. Loomba, R. Mohseni, K. J. Lucas, J. A. Gutierrez, R. G. Perry, J. F. Trotter, R. S. Rahimi, S. A. Harrison, V. Ajmera, J. D. Wayne, et al., “Tvb-2640 (fasn inhibitor) for the treatment of nonalcoholic steatohepatitis: Fascinate-1, a randomized, placebo-controlled phase 2a trial,” Gastroenterology, vol. 161, no. 5, pp. 1475–1486, 2021.

    Article  CAS  PubMed  Google Scholar 

  99. A. Janowczyk, A. Basavanhally, and A. Madabhushi, “Stain normalization using sparse autoencoders (stanosa): application to digital pathology,” Computerized Medical Imaging and Graphics, vol. 57, pp. 50–61, 2017.

    Article  PubMed  Google Scholar 

  100. D. Tellez, G. Litjens, P. Bándi, W. Bulten, J.-M. Bokhorst, F. Ciompi, and J. Van Der Laak, “Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology,” Medical image analysis, vol. 58, p. 101544, 2019.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors received financial support from National Council for Scientific and Technological Development CNPq (Grants #313643/2021-0, #311404/2021-9 and #307318/2022-2), the State of Minas Gerais Research Foundation - FAPEMIG (Grant #APQ-00578-18 and Grant #APQ-01129-21) and São Paulo Research Foundation - FAPESP (Grant #2022/03020-1).

Author information

Authors and Affiliations

Authors

Contributions

Adriano Barbosa Silva: conceptualization, investigation, methodology, software, validation, formal analysis, data curation, writing, visualization. Alessandro Santana Martins: investigation, validation, writing, visualization, resources, funding acquisition. Thaína Aparecida Azevedo Tosta: methodology, software, validation, writing, resources, funding acquisition. Adriano Mota Loyola: data curation, validation, resources, writing. Sérgio Vitorino Cardoso: data curation, validation, resources, writing. Leandro Alves Neves: validation, writing, resources, funding acquisition. Paulo Rogério de Faria: conceptualization, investigation, resources, data curation, validation, writing, supervision. Marcelo Zanchetta do Nascimento: conceptualization, methodology, software, validation, formal analysis, investigation, resources, writing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Adriano Barbosa Silva.

Ethics declarations

Ethics Approval

The experiments performed in this study were approved by the Ethics Committee on the Use of Animals under protocol numbers 038/09 and A016/21 at the Federal University of Uberlândia, Brazil.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.B., Martins, A.S., Tosta, T.A.A. et al. OralEpitheliumDB: A Dataset for Oral Epithelial Dysplasia Image Segmentation and Classification. J Digit Imaging. Inform. med. (2024). https://doi.org/10.1007/s10278-024-01041-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10278-024-01041-w

Keywords

Navigation