Skip to main content
Log in

Comparing Strain Assessment in Compressed Sensing and Conventional Cine MRI

  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study is to assess the feasibility of compressed sensing (CS) acceleration methods compared to conventional segmented cine (Seg) cardiac magnetic resonance (CMR) for evaluating left ventricular (LV) function and strain by feature tracking (FT). In this prospective study, 45 healthy volunteers underwent CMR imaging used Seg, threefold (CS3), fourfold (CS4), and eightfold (CS8) CS acceleration. Cine images were scored for quality (1–5 scale). LV volumetric and functional parameters and global longitudinal (GLS), circumferential (GCS), and radial strains (GRS) were quantified. LV volumetric and functional parameters exhibited no differences between Seg and all CS cines (all P > 0.05). The strains were similar for Seg, CS3, and CS4 (all P > 0.05). Similarly, no significant differences were observed in GRS and GCS between Seg and CS8 (all P > 0.05), but the global longitudinal strain was significantly lower for CS8 versus Seg (P < 0.001). Image quality declined with CS acceleration, especially in long-axis views with CS8. CS cine MRI at acceleration factor 4 maintained good image quality and accurate measurements of LV function and strain, although there was a slight reduction in the quality of long-axis images and GLS with CS8. CS acceleration up to a factor of 4 enabled fast CMR evaluations, making it suitable for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lewis RA, Johns CS, Cogliano M, Capener D, Tubman E, Elliot CA, et al. Identification of Cardiac Magnetic Resonance Imaging Thresholds for Risk Stratification in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2020 Feb 15;201(4):458–68.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cicala S, de Simone G, Roman MJ, Best LG, Lee ET, Wang W, et al. Prevalence and Prognostic Significance of Wall-Motion Abnormalities in Adults Without Clinically Recognized Cardiovascular Disease. Circulation. 2007 Jul 10;116(2):143–50.

    Article  PubMed  Google Scholar 

  3. Merlo M, Gagno G, Baritussio A, Bauce B, Biagini E, Canepa M, et al. Clinical application of CMR in cardiomyopathies: evolving concepts and techniques. Heart Fail Rev. 2023 Jan;28(1):77–95.

    Article  PubMed  Google Scholar 

  4. Bamberg F, Parhofer KG, Lochner E, Marcus RP, Theisen D, Findeisen HM, et al. Diabetes Mellitus: Long-term Prognostic Value of Whole-Body MR Imaging for the Occurrence of Cardiac and Cerebrovascular Events. Radiology. 2013 Dec;269(3):730–7.

    Article  PubMed  Google Scholar 

  5. M S Amzulescu, M De Craene, H Langet, A Pasquet, D Vancraeynest, A C Pouleur, J L Vanoverschelde, B L Gerber, Myocardial strain imaging: review of general principles, validation, and sources of discrepancies, European Heart Journal - Cardiovascular Imaging, Volume 20, Issue 6, June 2019, Pages 605–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi EY, Rosen BD, Fernandes VRS, Yan RT, Yoneyama K, Donekal S, et al. Prognostic value of myocardial circumferential strain for incident heart failure and cardiovascular events in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J. 2013 Aug;34(30):2354–61.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Russo C, Jin Z, Elkind MSV, Rundek T, Homma S, Sacco RL, et al. Prevalence and Prognostic Value of Subclinical Left Ventricular Systolic Dysfunction by Global Longitudinal Strain in a Community-Based Cohort. Eur J Heart Fail. 2014 Dec;16(12):1301–9.

    Article  PubMed  Google Scholar 

  8. Kihlberg J, Gupta V, Haraldsson H, Sigfridsson A, Sarvari SI, Ebbers T, et al. Clinical validation of three cardiovascular magnetic resonance techniques to measure strain and torsion in patients with suspected coronary artery disease. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2020 Dec 7;22(1):83.

    Google Scholar 

  9. Xu J, Yang W, Zhao S, Lu M. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives. Eur Radiol. 2022 Aug;32(8):5424–35.

    Article  PubMed  Google Scholar 

  10. Domenech-Ximenos B, Sanz-de la Garza M, Sepulveda-Martinez Á, Lorenzatti D, Simard F, Crispi F, et al. (2021) Assessment of myocardial deformation with CMR: a comparison with ultrasound speckle tracking. Eur Radiol. 31(10):7242–50.

    Article  PubMed  Google Scholar 

  11. Allen BD, Carr ML, Markl M, Zenge MO, Schmidt M, Nadar MS, et al. Accelerated real-time cardiac MRI using iterative sparse SENSE reconstruction: comparing performance in patients with sinus rhythm and atrial fibrillation. Eur Radiol. 2018 Jul;28(7):3088–96.

    Article  PubMed  Google Scholar 

  12. Morton G, Schuster A, Jogiya R, Kutty S, Beerbaum P, Nagel E. Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2012 Jun 21;14(1):43.

    Google Scholar 

  13. Kido T, Hirai K, Ogawa R, Tanabe Y, Nakamura M, Kawaguchi N, et al. Comparison between conventional and compressed sensing cine cardiovascular magnetic resonance for feature tracking global circumferential strain assessment. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2021 Feb 22;23(1):10.

    Google Scholar 

  14. Chen Y, Qian W, Liu W, Zhu Y, Zhou X, Xu Y, et al. Compressed SENSE Speed done right. Every time. Clin Radiol. 2021 Jun;76(6):471.e1-471.e7.

    Article  CAS  Google Scholar 

  15. Lustig M, Donoho D, Pauly JM. Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging. Magn Reson Med. 2007 Dec;58(6):1182–95.

    Article  PubMed  Google Scholar 

  16. Yin G, Cui C, An J, Zhao K, Yang K, Li S, et al. Assessment of Left Ventricular Systolic Function by Cardiovascular Magnetic Resonance Compressed Sensing Real-Time Cine Imaging Combined With Area-Length Method in Normal Sinus Rhythm and Atrial Fibrillation. Front Cardiovasc Med. 2022;9:896816.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, et al. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2016 Aug 24;18(1):50.

    Google Scholar 

  18. Sudarski S, Henzler T, Haubenreisser H, Dösch C, Zenge MO, Schmidt M, et al. Free-breathing sparse sampling cine Mr imaging with iterative reconstruction for the assessment of left Ventricular Function and Mass at 3.0 T1. Radiology. 2017 Jan;282(1):74–83.

    Article  PubMed  Google Scholar 

  19. Kocaoglu M, Pednekar AS, Wang H, Alsaied T, Taylor MD, Rattan MS. Breath-hold and free-breathing quantitative assessment of biventricular volume and function using compressed SENSE: a clinical validation in children and young adults. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2020 Jul 27;22(1):54.

    Google Scholar 

  20. Wang J, Lin Q, Pan Y, An J, Ge Y. The accuracy of compressed sensing cardiovascular magnetic resonance imaging in heart failure classifications. Int J Cardiovasc Imaging. 2020 Jun;36(6):1157–66.

    Article  PubMed  Google Scholar 

  21. Li X, Wang H, Zhao R, Wang T, Zhu Y, Qian Y, et al. Elevated Extracellular Volume Fraction and Reduced Global Longitudinal Strains in Participants Recovered from COVID-19 without Clinical Cardiac Findings. Radiology. 2021 May;299(2):E230–40.

    Article  PubMed  Google Scholar 

  22. Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S. Cardiovascular Magnetic Resonance Myocardial Feature Tracking. Circ Cardiovasc Imaging. 2016 Apr;9(4):e004077.

    Article  PubMed  Google Scholar 

  23. Aandal G, Nadig V, Yeh V, Rajiah P, Jenkins T, Sattar A, et al. Evaluation of left ventricular ejection fraction using through-time radial GRAPPA. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2014 Oct 1;16(1):79.

    Google Scholar 

  24. Otazo R, Candès E, Sodickson DK, et al. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med. 2015 Mar;73(3):1125-36.

    Article  PubMed  Google Scholar 

  25. Feng L, Srichai MB, Lim RP, et al. Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med. 2013 Jul;70(1):64-74.

    Article  PubMed  Google Scholar 

  26. Vincenti G, Monney P, Chaptinel J, et al. Compressed sensing single-breath-hold CMR for fast quantification of LV function, volumes, and mass. JACC Cardiovasc Imaging. 2014 Sep;7(9):882-92.

    Article  PubMed  Google Scholar 

  27. Craft J, Li Y, Nashta NF, Weber J. Comparison between compressed sensing and segmented cine cardiac magnetic resonance: a meta-analysis. BMC Cardiovasc Disord. 2023 Sep 21;23(1):473.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Andre F, Steen H, Matheis P, Westkott M, Breuninger K, Sander Y, et al. Age- and gender-related normal left ventricular deformation assessed by cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2015 Mar 10;17(1):25.

    Google Scholar 

  29. Kuetting DLR, Dabir D, Homsi R, Sprinkart AM, Luetkens J, Schild HH, et al. The effects of extracellular contrast agent (Gadobutrol) on the precision and reproducibility of cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2016 May 21;18(1):30.

    Google Scholar 

  30. Schuster A, Paul M, Bettencourt N, Morton G, Chiribiri A, Ishida M, et al. Cardiovascular magnetic resonance myocardial feature tracking for quantitative viability assessment in ischemic cardiomyopathy. Int J Cardiol. 2013 Jun 20;166(2):413–20.

    Article  PubMed  Google Scholar 

  31. Dobrovie M, Barreiro-Pérez M, Curione D, Symons R, Claus P, Voigt JU, et al. Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Prediction of Cardiovascular Events Following Myocardial Infarction. Eur Radiol. 2019 Dec;29(12):6846–57.

    Article  PubMed  Google Scholar 

  32. Barreiro-Pérez M, Curione D, Symons R, Claus P, Voigt JU, Bogaert J. Left ventricular global myocardial strain assessment comparing the reproducibility of four commercially available CMR-feature tracking algorithms. Eur Radiol. 2018 Dec;28(12):5137–47.

    Article  PubMed  Google Scholar 

  33. Langton JEN, Lam HI, Cowan BR, Occleshaw CJ, Gabriel R, Lowe B, et al. Estimation of myocardial strain from non-rigid registration and highly accelerated cine CMR4. Int J Cardiovasc Imaging. 2017 Jan;33(1):101–7.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82371949, 82371959, 82071897, 81970446), National Science Foundation for Distinguished Young Scholars of the Higher Education Institutions of Anhui Province, China (2022AH020071), and Anhui Provincial Natural Science Foundation (2308085Y48, 202304295107020027, 202304295107020028, 202304295107020029).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Kaixuan Yao and Wei Deng. The first draft of the manuscript was written by Kaixuan Yao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Liang Zhong or Xiaohu Li.

Ethics declarations

Ethics Approval

The local ethics committee approved this study, and all patients provided informed consent.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, K., Deng, W., He, R. et al. Comparing Strain Assessment in Compressed Sensing and Conventional Cine MRI. J Digit Imaging. Inform. med. (2024). https://doi.org/10.1007/s10278-024-01040-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10278-024-01040-x

Keywords

Navigation