Skip to main content
Log in

SAA-SDM: Neural Networks Faster Learned to Segment Organ Images

  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

In the field of medicine, rapidly and accurately segmenting organs in medical images is a crucial application of computer technology. This paper introduces a feature map module, Strength Attention Area Signed Distance Map (SAA-SDM), based on the principal component analysis (PCA) principle. The module is designed to accelerate neural networks’ convergence speed in rapidly achieving high precision. SAA-SDM provides the neural network with confidence information regarding the target and background, similar to the signed distance map (SDM), thereby enhancing the network’s understanding of semantic information related to the target. Furthermore, this paper presents a training scheme tailored for the module, aiming to achieve finer segmentation and improved generalization performance. Validation of our approach is carried out using TRUS and chest X-ray datasets. Experimental results demonstrate that our method significantly enhances neural networks’ convergence speed and precision. For instance, the convergence speed of UNet and UNET +  + is improved by more than 30%. Moreover, Segformer achieves an increase of over 6% and 3% in mIoU (mean Intersection over Union) on two test datasets without requiring pre-trained parameters. Our approach reduces the time and resource costs associated with training neural networks for organ segmentation tasks while effectively guiding the network to achieve meaningful learning even without pre-trained parameters. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Published public datasets were used for our experiments.

References

  1. Hao, S.; Zhou, Y.; Guo, Y. A Brief Survey on Semantic Segmentation with Deep Learning. Neurocomputing 2020, 406, 302–321.

    Article  Google Scholar 

  2. Asgari Taghanaki, S.; Abhishek, K.; Cohen, J.P.; Cohen-Adad, J.; Hamarneh, G. Deep Semantic Segmentation of Natural and Medical Images: A Review. Artificial Intelligence Review 2021, 54, 137–178.

    Article  Google Scholar 

  3. Hodge, A.C.; Fenster, A.; Downey, D.B.; Ladak, H.M. Prostate Boundary Segmentation from Ultrasound Images Using 2D Active Shape Models: Optimisation and Extension to 3D. Computer Methods and Programs in Biomedicine 2006, 84, 99–113, https://doi.org/10.1016/j.cmpb.2006.07.001.

    Article  PubMed  Google Scholar 

  4. Wang, X.-F.; Min, H.; Zou, L.; Zhang, Y.-G.; Tang, Y.-Y.; Chen, C.-L.P. An Efficient Level Set Method Based on Multi-Scale Image Segmentation and Hermite Differential Operator. Neurocomputing 2016, 188, 90–101.

    Article  Google Scholar 

  5. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE transactions on neural networks and learning systems 2021.

  6. Gunel, B. Leveraging Prior Knowledge and Structure for Data-Efficient Machine Learning; Stanford University, 2022;

  7. Li, J.; Nebelung, S.; Schock, J.; Rath, B.; Tingart, M.; Liu, Y.; Siroros, N.; Eschweiler, J. A Novel Combined Level Set Model for Carpus Segmentation from Magnetic Resonance Images with Prior Knowledge Aligned in Polar Coordinate System. Computer Methods and Programs in Biomedicine 2021, 208, 106245.

    Article  PubMed  Google Scholar 

  8. Peng, T.; Wu, Y.; Qin, J.; Wu, Q.J.; Cai, J. H-ProSeg: Hybrid Ultrasound Prostate Segmentation Based on Explainability-Guided Mathematical Model. Computer Methods and Programs in Biomedicine 2022, 219, 106752.

    Article  PubMed  Google Scholar 

  9. Zhang, Z.; Gao, S.; Huang, Z. An Automatic Glioma Segmentation System Using a Multilevel Attention Pyramid Scene Parsing Network. Current Medical Imaging 2021, 17, 751–761.

    Article  PubMed  Google Scholar 

  10. Long, X.; Zhang, W.; Zhao, B. PSPNet-SLAM: A Semantic SLAM Detect Dynamic Object by Pyramid Scene Parsing Network. IEEE Access 2020, 8, 214685–214695.

    Article  Google Scholar 

  11. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. Model Compression and Acceleration for Deep Neural Networks: The Principles, Progress, and Challenges. IEEE Signal Processing Magazine 2018, 35, 126–136, https://doi.org/10.1109/MSP.2017.2765695.

    Article  Google Scholar 

  12. Lebedev, V.; Lempitsky, V. Speeding-up Convolutional Neural Networks: A Survey. Bulletin of the Polish Academy of Sciences: Technical Sciences 2018, 66, 799–810, https://doi.org/10.24425/bpas.2018.125927.

    Article  Google Scholar 

  13. Islam*, M.A.; Jia*, S.; Bruce, N.D.B. How Much Position Information Do Convolutional Neural Networks Encode?; September 25 2019.

  14. Liu, R.; Lehman, J.; Molino, P.; Petroski Such, F.; Frank, E.; Sergeev, A.; Yosinski, J. An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution. Advances in Neural Information Processing Systems 2018, 31.

  15. Li, S.; Zhang, C.; He, X. Shape-Aware Semi-Supervised 3D Semantic Segmentation for Medical Images. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I 23; Springer, 2020; pp. 552–561.

  16. Liu, S.; Li, Y.; Li, X.; Cao, G. Shape-Aware Multi-Task Learning for Semi-Supervised 3D Medical Image Segmentation. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); December 2021; pp. 1418–1423.

  17. Grandvalet, Y.; Bengio, Y.; Chapelle, O.; Schölkopf, B.; Zien, A. Entropy Regularization. Springer 2006.

  18. Lee, D.-H. Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. In Proceedings of the Workshop on challenges in representation learning, ICML; 2013; Vol. 3, p. 896.

  19. Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. IEEE 2016, https://doi.org/10.1109/3DV.2016.79.

    Article  Google Scholar 

  20. Wu, P.; Liu, Y.; Li, Y.; Shi, Y. TRUS Image Segmentation with Non-Parametric Kernel Density Estimation Shape Prior. Biomedical Signal Processing & Control 2013, 8, 764–771, https://doi.org/10.1016/j.bspc.2013.07.002.

    Article  Google Scholar 

  21. Jaeger, S.; Karargyris, A.; Candemir, S.; Folio, L.; Siegelman, J.; Callaghan, F.; Xue, Z.; Palaniappan, K.; Singh, R.K.; Antani, S. Automatic Tuberculosis Screening Using Chest Radiographs. IEEE Transactions on Medical Imaging 2014, 33, 233–245, https://doi.org/10.1109/TMI.2013.2284099.

    Article  PubMed  Google Scholar 

  22. Hooda, R.; Mittal, A.; Sofat, S. Lung Segmentation in Chest Radiographs Using Fully Convolutional Networks. Turkish Journal of Electrical Engineering and Computer Sciences 2019, 710–722, https://doi.org/10.3906/elk-1710-157.

  23. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18; Springer, 2015; pp. 234–241.

  24. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. 2018, https://doi.org/10.1007/978-3-030-00889-5_1.

  25. Huang, H.; Lin, L.; Tong, R.; Hu, H.; Wu, J. UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. arXiv 2020, https://doi.org/10.1109/ICASSP40776.2020.9053405.

  26. Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Jagersand, M. U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection. Pattern Recognition 2020, 106, 107404, https://doi.org/10.1016/j.patcog.2020.107404.

    Article  Google Scholar 

  27. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. 2017:https://doi.org/10.17863/CAM.17966.

  28. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; Mcdonagh, S.; Hammerla, N.Y.; Kainz, B. Attention U-Net: Learning Where to Look for the Pancreas. 2018, https://doi.org/10.48550/arXiv.1804.03999.

    Article  Google Scholar 

  29. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. 2021, https://doi.org/10.48550/arXiv.2105.15203.

  30. Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for Semantic Segmentation.; 2021; pp. 7262–7272.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y.S. and C.G.; methodology, C.G.; software, S.Y and C.G..; validation, C.G., R.Z, S.Y. and B.L.; formal analysis, C.G.; investigation, S.Y. and C.G.; data curation, Y.S.; writing—original draft preparation, S.Y. and C.G..; writing—review and editing, C.G.; visualization, S.Y. and C.G.; supervision, Y.S. and B.L.; project administration, Y.S. and B.L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yongtao Shi.

Ethics declarations

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Shi, Y., Yang, S. et al. SAA-SDM: Neural Networks Faster Learned to Segment Organ Images. J Digit Imaging. Inform. med. 37, 547–562 (2024). https://doi.org/10.1007/s10278-023-00947-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00947-1

Keywords

Navigation