Skip to main content

Advertisement

Log in

Enhancing Disease Classification with Deep Learning: a Two-Stage Optimization Approach for Monkeypox and Similar Skin Lesion Diseases

  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

Monkeypox (MPox) is an infectious disease caused by the monkeypox virus, presenting challenges in accurate identification due to its resemblance to other diseases. This study introduces a deep learning-based method to distinguish visually similar diseases, specifically MPox, chickenpox, and measles, addressing the 2022 global MPox outbreak. A two-stage optimization approach was presented in the study. By analyzing pre-trained deep neural networks including 71 models, this study optimizes accuracy through transfer learning, fine-tuning, and ensemble learning techniques. ConvNeXtBase, Large, and XLarge models were identified achieving 97.5% accuracy in the first stage. Afterwards, some selection criteria were followed for the models identified in the first stage for use in ensemble learning technique within the optimization approach. The top-performing ensemble model, EM3 (composed of RegNetX160, ResNetRS101, and ResNet101), attains an AUC of 0.9971 in the second stage. Evaluation on unseen data ensures model robustness and enhances the study’s overall validity and reliability. The design and implementation of the study have been optimized to address the limitations identified in the literature. This approach offers a rapid and highly accurate decision support system for timely MPox diagnosis, reducing human error, manual processes, and enhancing clinic efficiency. It aids in early MPox detection, addresses diverse disease challenges, and informs imaging device software development. The study’s broad implications support global health efforts and showcase artificial intelligence potential in medical informatics for disease identification and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The dataset used in this article is online available at https://doi.org/10.17632/R9BFPNVYXR.6.

References

  1. WHO. (2023). Mpox (monkeypox). Mpox (Monkeypox). https://www.who.int/news-room/fact-sheets/detail/monkeypox

  2. Haque, Md. E., Ahmed, Md. R., Nila, R. S., & Islam, S. (2022a). Classification of Human Monkeypox Disease Using Deep Learning Models and Attention Mechanisms. https://arxiv.org/abs/2211.15459v1

  3. CDC. (2022). About Chickenpox. About Chickenpox. https://www.cdc.gov/chickenpox/about/index.html#

  4. NHS. (2022). Measles. Measles. https://www.nhs.uk/conditions/measles/

  5. Delidow, B. C., Lynch, J. P., Peluso, J. J., & White, B. A. (1993). Polymerase Chain Reaction. In B. A. White (Ed.), PCR Protocols: Current Methods and Applications (pp. 1–29). Humana Press. https://doi.org/10.1385/0-89603-244-2:1

  6. Binny, R. N., Priest, P., French, N. P., Parry, M., Lustig, A., Hendy, S. C., Maclaren, O. J., Ridings, K. M., Steyn, N., Vattiato, G., & Plank, M. J. (2023). Sensitivity of Reverse Transcription Polymerase Chain Reaction Tests for Severe Acute Respiratory Syndrome Coronavirus 2 Through Time. The Journal of Infectious Diseases, 227(1), 9–17. https://doi.org/10.1093/infdis/jiac317

    Article  CAS  Google Scholar 

  7. Kanji, J. N., Zelyas, N., MacDonald, C., Pabbaraju, K., Khan, M. N., Prasad, A., Hu, J., Diggle, M., Berenger, B. M., & Tipples, G. (2021). False negative rate of COVID-19 PCR testing: a discordant testing analysis. Virology Journal, 18(1), 13. https://doi.org/10.1186/s12985-021-01489-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aggarwal, A., Rani, A., & Kumar, M. (2020). A robust method to authenticate car license plates using segmentation and ROI based approach. Smart and Sustainable Built Environment, 9(4), 737–747. https://doi.org/10.1108/SASBE-07-2019-0083

    Article  Google Scholar 

  9. Aggarwal, G., Jhajharia, K., Izhar, J., Kumar, M., & Abualigah, L. (2023). A Machine Learning Approach to Classify Biomedical Acoustic Features for Baby Cries. Journal of Voice. https://doi.org/10.1016/J.JVOICE.2023.06.014

    Article  PubMed  Google Scholar 

  10. Alhudhaif, A., Almaslukh, B., Aseeri, A. O., Guler, O., & Polat, K. (2023). A novel nonlinear automated multi-class skin lesion detection system using soft-attention based convolutional neural networks. Chaos, Solitons & Fractals, 170, 113409. https://doi.org/10.1016/j.chaos.2023.113409

  11. Güler, O., & Polat, K. (2022). Classification Performance of Deep Transfer Learning Methods for Pneumonia Detection from Chest X-Ray Images. Journal of Artificial Intelligence and Systems, 4(1), 107–126. https://doi.org/10.33969/AIS.2022040107

  12. Bütüner, R., & Calp, M. H. (2022). Diagnosis and Detection of COVID-19 from Lung Tomography Images Using Deep Learning and Machine Learning Methods. International Journal of Intelligent Systems and Applications in Engineering, 10(2), 190–200. https://ijisae.org/index.php/IJISAE/article/view/1843

  13. Raheja, S., Kasturia, S., Cheng, X., & Kumar, M. (2023). Machine learning-based diffusion model for prediction of coronavirus-19 outbreak. Neural Computing and Applications, 35(19), 13755–13774. https://doi.org/10.1007/s00521-021-06376-x

    Article  PubMed  Google Scholar 

  14. Al-Saedi, D. K. A., & Savaş, S. (2022). Classification of Skin Cancer with Deep Transfer Learning Method. Computer Science, IDAP-2022(International Artificial Intelligence and Data Processing Symposium), 202–210. https://doi.org/10.53070/BBD.1172782

  15. Madhu, G., Govardhan, A., Ravi, V., Kautish, S., Srinivas, B. S., Chaudhary, T., & Kumar, M. (2022). DSCN-net: a deep Siamese capsule neural network model for automatic diagnosis of malaria parasites detection. Multimedia Tools and Applications, 81(23), 34105–34127. https://doi.org/10.1007/s11042-022-13008-6

    Article  Google Scholar 

  16. Alhatemi, R. A. J., & Savaş, S. (2022). Transfer Learning-Based Classification Comparison of Stroke. Computer Science, IDAP 2022:(International Artificial Intelligence and Data Processing Symposium), 192–201. https://doi.org/10.53070/BBD.1172807

  17. Chen, H., & Sung, J. J. Y. (2021). Potentials of AI in medical image analysis in Gastroenterology and Hepatology. Journal of Gastroenterology and Hepatology, 36(1), 31–38. https://doi.org/10.1111/JGH.15327

    Article  PubMed  Google Scholar 

  18. Kolla, L., Gruber, F. K., Khalid, O., Hill, C., & Parikh, R. B. (2021). The case for AI-driven cancer clinical trials – The efficacy arm in silico. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1876(1), 188572. https://doi.org/10.1016/J.BBCAN.2021.188572

  19. Ahsan, M. M., Uddin, M. R., Farjana, M., Sakib, A. N., Momin, K. Al, & Luna, S. A. (2022). Image Data collection and implementation of deep learning-based model in detecting Monkeypox disease using modified VGG16. https://arxiv.org/abs/2206.01862v1

  20. Bala, D., Hossain, M. S., Hossain, M. A., Abdullah, M. I., Rahman, M. M., Manavalan, B., Gu, N., Islam, M. S., & Huang, Z. (2023). MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification. Neural Networks, 161, 757–775. https://doi.org/10.1016/J.NEUNET.2023.02.022

    Article  PubMed  PubMed Central  Google Scholar 

  21. Akın, K. D., Gürkan, Ç., Budak, A., & Karatas, H. (2022). Classification of Monkeypox Skin Lesion using the Explainable Artificial Intelligence Assisted Convolutional Neural Networks. European Journal of Science and Technology, 40, 106–110.

    Google Scholar 

  22. Yaşar, H. (2022). Transfer Derin Öğrenme Kullanılarak Maymun Çiçeği Hastalığının İki Sınıflı ve Çok Sınıflı Sınıflandırılması Üzerine Kapsamlı Bir Çalışma. ELECO 2022 - Elektrik-Elektronik ve Biyomedikal Mühendisliği Konferansı, 1–5.

  23. Haque, Md. E., Ahmed, Md. R., Nila, R. S., & Islam, S. (2022b). Classification of Human Monkeypox Disease Using Deep Learning Models and Attention Mechanisms. ArXiv. https://arxiv.org/abs/2211.15459v1

  24. Dwivedi, M., Tiwari, R. G., & Ujjwal, N. (2022). Deep Learning Methods for Early Detection of Monkeypox Skin Lesion. 2022 8th International Conference on Signal Processing and Communication, ICSC 2022, 343–348. https://doi.org/10.1109/ICSC56524.2022.10009571

  25. Uzun Ozsahin, D., Mustapha, M. T., Uzun, B., Duwa, B., & Ozsahin, I. (2023). Computer-Aided Detection and Classification of Monkeypox and Chickenpox Lesion in Human Subjects Using Deep Learning Framework. Diagnostics, 13(2). https://doi.org/10.3390/diagnostics13020292

  26. Pramanik, R., Banerjee, B., Efimenko, G., Kaplun, D., & Sarkar, R. (2023). Monkeypox detection from skin lesion images using an amalgamation of CNN models aided with Beta function-based normalization scheme. PLOS ONE, 18(4), e0281815. https://doi.org/10.1371/JOURNAL.PONE.0281815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Irmak, M. C., Aydin, T., & Yağanoğlu, M. (2022). Monkeypox Skin Lesion Detection with MobileNetV2 and VGGNet Models. 2022 Medical Technologies Congress (TIPTEKNO), 1–4. https://doi.org/10.1109/TIPTEKNO56568.2022.9960194

    Article  Google Scholar 

  28. Sahin, V. H., Oztel, I., & Yolcu Oztel, G. (2022). Human Monkeypox Classification from Skin Lesion Images with Deep Pre-trained Network using Mobile Application. Journal of Medical Systems, 46(11), 79. https://doi.org/10.1007/s10916-022-01863-7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sitaula, C., & Shahi, T. B. (2022). Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches. Journal of Medical Systems, 46(11), 78. https://doi.org/10.1007/s10916-022-01868-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Altun, M., Gürüler, H., Özkaraca, O., Khan, F., Khan, J., & Lee, Y. (2023). Monkeypox Detection Using CNN with Transfer Learning. Sensors, 23(4). https://doi.org/10.3390/s23041783

  31. Bala, D., & Hossain, M. S. (2023). Monkeypox Skin Images Dataset (MSID). 6. https://doi.org/10.17632/R9BFPNVYXR.6

  32. Cubuk, E. D., Zoph, B., Shlens, J., & Le, Q. V. (2019). RandAugment: Practical automated data augmentation with a reduced search space. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 3008–3017. https://doi.org/10.1109/CVPRW50498.2020.00359

  33. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/S40537-019-0197-0/FIGURES/33

    Article  Google Scholar 

  34. Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  35. Weiss, K., Khoshgoftaar, T. M., & Wang, D. D. (2016). A survey of transfer learning. Journal of Big Data, 3(1), 1–40. https://doi.org/10.1186/S40537-016-0043-6/TABLES/6

    Article  Google Scholar 

  36. Keras. (2023). Keras Applications. Keras Applications. https://keras.io/api/applications/

  37. TensorFlow. (2023). Module: tf.keras.applications | TensorFlow v2.12.0. Module: Tf.Keras.Applications | TensorFlow v2.12.0. https://www.tensorflow.org/api_docs/python/tf/keras/applications

  38. Brown, G. (2010). Ensemble Learning. In G. I. Sammut Claude and Webb (Ed.), Encyclopedia of Machine Learning (pp. 312–320). Springer US. https://doi.org/10.1007/978-0-387-30164-8_252

  39. Deng, L., & Yu, D. (2013). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3–4), 197–387. https://doi.org/10.1561/2000000039

    Article  Google Scholar 

  40. Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3), 21–44. https://doi.org/10.1109/MCAS.2006.1688199

    Article  Google Scholar 

  41. Ng, K. W., Tian, G. L., & Tang, M. L. (2011). Dirichlet and Related Distributions: Theory, Methods and Applications. In Dirichlet and Related Distributions: Theory, Methods and Applications. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119995784

    Book  Google Scholar 

  42. Borges, J. (2019). DeepStack: Ensembles for Deep Learning. https://github.com/jcborges/DeepStack

  43. Howard, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text Classification. ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 1, 328–339. https://doi.org/10.18653/v1/p18-1031

  44. Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? Advances in Neural Information Processing Systems, 4(January), 3320–3328. https://arxiv.org/abs/1411.1792v1

  45. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(56), 1929–1958. http://jmlr.org/papers/v15/srivastava14a.html

  46. Gao, B., & Pavel, L. (2017). On the Properties of the Softmax Function with Application in Game Theory and Reinforcement Learning. https://arxiv.org/abs/1704.00805v4

  47. Bock, S., Goppold, J., & Weiß, M. (2018). An improvement of the convergence proof of the ADAM-Optimizer. https://arxiv.org/abs/1804.10587v1

  48. Kingma, D. P., & Ba, J. L. (2014). Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. https://arxiv.org/abs/1412.6980v9

  49. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

  50. Gómez, R. (2018). Understanding Categorical Cross-Entropy Loss, Binary Cross-Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss and all those confusing names. Github. https://gombru.github.io/2018/05/23/cross_entropy_loss/

  51. WHO. (2022). Second meeting of the International Health Regulations (2005) (IHR) Emergency Committee regarding the multi-country outbreak of monkeypox. Second Meeting of the International Health Regulations (2005) (IHR) Emergency Committee Regarding the Multi-Country Outbreak of Monkeypox. https://www.who.int/news/item/23-07-2022-second-meeting-of-the-international-health-regulations-(2005)-(ihr)-emergency-committee-regarding-the-multi-country-outbreak-of-monkeypox

  52. Nuzzo, J. B., Borio, L. L., & Gostin, L. O. (2022). The WHO Declaration of Monkeypox as a Global Public Health Emergency. JAMA, 328(7), 615–617. https://doi.org/10.1001/JAMA.2022.12513

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Serkan Savaş: conceptualization, methodology, investigation, data acquisition, testing, validation, visualization, writing, original draft, and editing.

Corresponding author

Correspondence to Serkan Savaş.

Ethics declarations

Ethics Approval

Only data coming from publicly available datasets were used and ethics approval not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savaş, S. Enhancing Disease Classification with Deep Learning: a Two-Stage Optimization Approach for Monkeypox and Similar Skin Lesion Diseases. J Digit Imaging. Inform. med. 37, 778–800 (2024). https://doi.org/10.1007/s10278-023-00941-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00941-7

Keywords

Navigation