Skip to main content

Advertisement

Log in

Interior Reconstruction from Truncated Projection Data in Cone-beam Computed Tomography

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The interior reconstruction of completely truncated projection data is a frontier research hotspot in cone-beam computed tomography (CBCT) application. It is difficult to find a method with acceptable accuracy and high efficiency to solve it. Based on the simplified algebraic reconstruction technique (S-ART) algorithm and the filtered back projection (FBP) algorithm with the new filter, an efficient and feasible interior reconstruction algorithm is proposed in this paper. The algorithm uses the S-ART algorithm to quickly recover the complete projection data and then uses the new ramp filter which can suppress the high-frequency noise in the projection data to filter the recovered complete projection data. Finally, the interior reconstructed images are obtained by back projection. The computational complexity of the proposed algorithm is close to that of the FBP algorithm for the reconstruction of the whole object, and the reconstructed image quality is acceptable, which provides an effective method for interior reconstruction in CBCT. Simulation results show the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. J. Tang, B. L. Li, Z. W. Qiao, et al., An imperceptible incorrectness in deriving data consistency condition from John's equation for cone-beam CT imaging, Optik 202(3) (2020) 163603.

    Article  Google Scholar 

  2. X. C. Wang, Z. Y. Tang, B. Yan, et al., Interior reconstruction method based on rotation-translation scanning model, Journal of X-ray Science and Technology 22(1) (2014) 37-45.

    Article  PubMed  Google Scholar 

  3. X. C. Wang, G. E. Hu, Y. Bin, et al., Fast low-dose reconstruction from truncated data in dental CT, IEEE Transactions on Nuclear Science 60(1) (2013) 174-181.

    Article  Google Scholar 

  4. B. D. Smith, Image reconstruction from cone-beam projections: necessary and sufficient condition and reconstruction method, IEEE Transactions on Medical Imaging 4(1) (1985) 14-28.

    Article  CAS  PubMed  Google Scholar 

  5. G. Wang, H. Y. Yu, The meaning of interior tomography, Physics in Medicine and Biology 58(16) (2013) 161-186.

    Article  Google Scholar 

  6. A. Faridani, E. L. Ritman, K. T. Smith, Local tomography, SIAM Journal on Applied Mathematics 52(2) (1992) 459-484.

    Article  Google Scholar 

  7. A. J. Katsevich, A. G. Ramm, Pseudolocal tomography, SIAM Journal on Applied Mathematics 56(1) (1996) 167-191.

    Article  Google Scholar 

  8. M. Bhatia, W. C. Karl, A. S. Willsky, A wavelet-based method for multiscale tomographic reconstruction, IEEE Transactions On Medical Imaging 15(1) (1996) 92-101.

    Article  CAS  PubMed  Google Scholar 

  9. F. R. Farrokhi, K. J. R. Liu, C. A. Berenstein, et al., Wavelet-based multiresolution local tomography, IEEE Transaction on Image Processing 10(6) (1997) 1412-1429.

    Article  Google Scholar 

  10. S. Y. Zhao, G. Wang, Feldkamp-type cone beam tomography in the wavelet framework, IEEE Transactions on Medical Imaging 19(9) (2000) 922-929.

    Article  CAS  PubMed  Google Scholar 

  11. Y. B. Ye, H. Y. Yu, Y. C. Wei, et al., A general local reconstruction approach based on a truncated Hilbert transform, International Journal of Biomedical Imaging 1(1) (2007) 1-8.

    Google Scholar 

  12. H. Kudo, M. Courdurier, F. Noo, et al., Tiny a priori knowledge solves the interior problem in computed tomography, Physics in Medicine and Biology 53(9) (2008) 2207-2231.

    Article  PubMed  Google Scholar 

  13. G. V. Gompel, M. Defrise, K. J. Batenburg, Reconstruction of a uniform star object from interior x-ray data: uniqueness, stability and algorithm, Inverse Problem 25(6) (2009) 1-19.

    Google Scholar 

  14. L. Li, K. J. Kang, Z. Q. Chen, et al., A general region-of-interest image reconstruction approach with truncated Hilbert transform, Journal of X-ray Science and Technology 17(2) (2009)135-152.

    Article  PubMed  Google Scholar 

  15. Z. L. Hu, Y. W. Zhang, J. B. Liu, et al., A feature refinement approach for statistical interior CT reconstruction, Physics in Medicine and Biology 61(14) (2016) 5311-5334.

    Article  CAS  PubMed  Google Scholar 

  16. Z. Y. Qu, X. M. Yan, J. X. Pan, et al., Sparse view CT image reconstruction based on total variation and wavelet frame regularization, IEEE Access 8 (2020) 57400-57413.

    Article  Google Scholar 

  17. A. L. Cai, L. Li, L. Y. Wang, et al., Optimization-based region-of-interest reconstruction for X-ray computed tomography based on total variation and data derivative, Physica Medica 48 (2018) 91-102.

    Article  PubMed  Google Scholar 

  18. H. Y. Yu, G. Wang, J. Hsieh, et al., Compressive sensing-based interior tomography, Journal of Computer Assisted Tomography 35(6) (2011) 762-764.

    Article  PubMed  PubMed Central  Google Scholar 

  19. R. Gordon, R. Bender, G. T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography, Journal of Theoretical Biology 29(3) (1970) 471-481.

    Article  CAS  PubMed  Google Scholar 

  20. Y. S. Zhao, X. Zhao, P. Zhang, An extended algebraic reconstruction technique (E-ART) for dual spectral CT, IEEE Transactions on Medical Imaging 34(3) (2015) 761-768.

    Article  PubMed  Google Scholar 

  21. X. C. Wang, S. Y. Li, C. S. Jiang, Fast system matrix calculation based on voxel projection in cone-beam CT, Optik 231(2) (2021) 166422.

    Article  Google Scholar 

  22. R. L. Siddon, Fast calculation of the exact radiological path for a three-dimensional CT array, Medical Physics 12(2) (1985) 252-255.

    Article  CAS  PubMed  Google Scholar 

  23. H. Gao, Fast parallel algorithm for the x-ray transform and its adjoint, Medical Physics 39(11) (2012) 7110-7120.

    Article  PubMed  PubMed Central  Google Scholar 

  24. X. C. Wang, L. Li, C. Q. Yu, et al., Fast reconstruction of flat region in a super-short scan based on MD-FBP algorithm, Journal of X-Ray Science and Technology 20(1) (2012) 69-77.

    Article  CAS  PubMed  Google Scholar 

  25. L. A. Feldkamp, L. C. Davis, J. W. Kress, Practical cone-beam algorithm, Journal of the Optical Society America 1(A) (1984) 612–619.

  26. X. Tao, H. Zhang, Y. B. Wang, et al., VVBP-tensor in the FBP algorithm: its properties and application in low-dose CT reconstruction, IEEE Transactions on Medical Imaging 39(3) (2019) 764-776.

    Article  PubMed  Google Scholar 

  27. L. A. Shepp, B. F. Logan, The Fourier reconstruction of a head section, IEEE Transactions on Nuclear Science, 21(3) (1974) 21-43.

    Article  Google Scholar 

  28. Y. C. Wei, G. Wang, An intuitive discussion on the ideal ramp filter in computed tomography, Computers and Mathematics with Applications 49(5) (2005) 731-740.

    Article  Google Scholar 

  29. X. C. Wang, Z. Y. Tang, Z. B. Zhu, et al., Cone-beam reconstruction of flat specimens in a super-short scan, Insight 57(10) (2015) 571-575.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Startup Fund of Nanchang Institute of Science and Technology (Grant No. 20201072), the Nanchang Key Laboratory of Internet of Things Information Visualization Technology (Grant No. 2020-NCZDSY-017), and the Science and Technology Research Project of Jiangxi Province (Grant No. GJJ212503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Xianchao.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xianchao, W., Shaoyi, L. & Changhui, H. Interior Reconstruction from Truncated Projection Data in Cone-beam Computed Tomography. J Digit Imaging 36, 250–258 (2023). https://doi.org/10.1007/s10278-022-00695-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-022-00695-8

Keywords

Navigation