Skip to main content

Advertisement

Log in

Meniscal Tear and ACL Injury Detection Model Based on AlexNet and Iterative ReliefF

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Magnetic resonance (MR) is one of the special imaging techniques used to diagnose orthopedics and traumatology. In this study, a new method has been proposed to detect highly accurate automatic meniscal tear and anterior cruciate ligament (ACL) injuries. In this study, images in three different slices were collected. These are the sagittal, coronal, and axial slices, respectively. Images taken from each slice were categorized in 3 different ways: sagittal database (sDB), coronal database (cDB), and axial database (aDB). The proposed model in the study uses deep feature extraction. In this context, deep features have been obtained by using fully-connected layers of AlexNet architecture. In the second stage of the study, the most significant features were selected using the iterative RelifF (IRF) algorithm. In the last step of the application, the features are classified by using the k-nearest neighbor (kNN) method. Three datasets were used in the study. These datasets, sDB, and cDB, have four classes and consist of 442 and 457 images, respectively. The aDB used in the study has two class labels and consists of 190 images. The model proposed within the scope of the study was applied in 3 datasets. In this context, 98.42%, 100%, and 100% accuracy values were obtained for sDB, cDB, and aDB datasets, respectively. The study results showed that the proposed method detected meniscal tear and anterior cruciate ligament (ACL) injuries with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Englund, A. Guermazi, D. Gale, D.J. Hunter, P. Aliabadi, M. Clancy, D.T. Felson, Incidental meniscal findings on knee MRI in middle-aged and elderly persons, N. Engl. J. Med. 359 (2008) 1108–1115.

    Article  CAS  Google Scholar 

  2. M. Jarraya, F.W. Roemer, M. Englund, M.D. Crema, H.I. Gale, D. Hayashi, J.N. Katz, A. Guermazi, Meniscus morphology: does tear type matter? A narrative review with focus on relevance for osteoarthritis research, in: Semin. Arthritis Rheum., Elsevier, 2017: pp. 552–561.

  3. J.H. Ahn, S.H. Jeong, H.W. Kang, Risk factors of false-negative magnetic resonance imaging diagnosis for meniscal tear associated with anterior cruciate ligament tear, Arthrosc. J. Arthrosc. Relat. Surg. 32 (2016) 1147–1154.

    Article  Google Scholar 

  4. K.G. Shea, J.L. Carey, Management of anterior cruciate ligament injuries: evidence-based guideline, JAAOS-Journal Am. Acad. Orthop. Surg. 23 (2015) e1–e5.

    Article  Google Scholar 

  5. N. Maffulli, U.G. Longo, S. Campi, V. Denaro, Meniscal tears, Open Access J. Sport. Med. 1 (2010) 45.

    Article  Google Scholar 

  6. D. Zbrojkiewicz, C. Vertullo, J.E. Grayson, Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015, Med. J. Aust. 208 (2018) 354–358.

    Article  Google Scholar 

  7. M. Karia, Y. Ghaly, N. Al-Hadithy, S. Mordecai, C. Gupte, Current concepts in the techniques, indications and outcomes of meniscal repairs, Eur. J. Orthop. Surg. Traumatol. 29 (2019) 509–520.

    Article  Google Scholar 

  8. W.-F. Xiao, T. Yang, Y. Cui, C. Zeng, S. Wu, Y.-L. Wang, G.-H. Lei, Risk factors for noncontact anterior cruciate ligament injury: analysis of parameters in proximal tibia using anteroposterior radiography, J. Int. Med. Res. 44 (2016) 157–163.

    Article  Google Scholar 

  9. C.L. Ardern, N.F. Taylor, J.A. Feller, K.E. Webster, Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors, Br. J. Sports Med. 48 (2014) 1543–1552.

    Article  Google Scholar 

  10. K. Li, J. Du, L.-X. Huang, L. Ni, T. Liu, H.-L. Yang, The diagnostic accuracy of magnetic resonance imaging for anterior cruciate ligament injury in comparison to arthroscopy: a meta-analysis, Sci. Rep. 7 (2017) 1–10.

    Article  Google Scholar 

  11. H.O. Alanazi, A.H. Abdullah, K.N. Qureshi, A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care, J. Med. Syst. 41 (2017) 69.

    Article  Google Scholar 

  12. H.A. Khan, H. Ahad, P. Sharma, P. Bajaj, N. Hassan, Y. Kamal, Correlation between magnetic resonance imaging and arthroscopic findings in the knee joint, Trauma Mon. 20 (2015).

  13. A. Kim, L. Khoury, M. Schweitzer, L. Jazrawi, C. Ishak, R. Meislin, F. Kummer, O.H. Sherman, Effect of specialty and experience on the interpretation of knee MRI scans, Bull. NYU Hosp. Jt. Dis. 66 (2008) 272.

    PubMed  Google Scholar 

  14. M.S. Swain, N. Henschke, S.J. Kamper, A.S. Downie, B.W. Koes, C.G. Maher, Accuracy of clinical tests in the diagnosis of anterior cruciate ligament injury: a systematic review, Chiropr. Man. Therap. 22 (2014) 1–10.

    Article  Google Scholar 

  15. M.F.J. Acosta, L.Y.C. Tovar, M.B. Garcia-Zapirain, W.S. Percybrooks, Melanoma diagnosis using deep learning techniques on dermatoscopic images, BMC Med. Imaging. 21 (2021) 1–11.

    Article  Google Scholar 

  16. P.K. Chaudhary, R.B. Pachori, Automatic diagnosis of glaucoma using two-dimensional fourier-bessel series expansion based empirical wavelet transform, Biomed. Signal Process. Control. 64 (2021) 102237.

  17. P. López-Úbeda, M.C. Díaz-Galiano, T. Martín-Noguerol, A. Luna, L.A. Ureña-López, M.T. Martín-Valdivia, Automatic medical protocol classification using machine learning approaches, Comput. Methods Programs Biomed. (2021) 105939.

  18. K.E. Sengun, Y.T. Cetin, M.S. Guzel, S. Can, E. Bostanci, Automatic liver segmentation from CT images using deep learning algorithms: a comparative study, ArXiv Prepr. ArXiv2101.09987. (2021).

  19. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012) 1097–1105.

    Google Scholar 

  20. M. Robnik-Šikonja, I. Kononenko, Theoretical and empirical analysis of ReliefF and RReliefF, Mach. Learn. 53 (2003) 23–69.

    Article  Google Scholar 

  21. I. Kononenko, Estimating attributes: analysis and extensions of RELIEF, Mach. Learn. ECML-94. (1994) 171–182. https://doi.org/10.1007/3-540-57868-4_57.

  22. J. Maillo, S. Ramírez, I. Triguero, F. Herrera, kNN-IS: an iterative spark-based design of the k-nearest neighbors classifier for big data, Knowledge-Based Syst. 117 (2017) 3–15. https://doi.org/10.1016/j.knosys.2016.06.012.

    Article  Google Scholar 

  23. T. Tuncer, S. Dogan, P. Pławiak, U. Rajendra Acharya, Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals, Knowledge-Based Syst. 186 (2019) 104923. https://doi.org/10.1016/j.knosys.2019.104923.

  24. M.J. Warrens, On the equivalence of Cohen’s kappa and the Hubert-Arabie Adjusted Rand Index, J. Classif. 25 (2008) 177–183. https://doi.org/10.1007/s00357-008-9023-7.

    Article  Google Scholar 

  25. D. Chicco, G. Jurman, The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation, BMC Genomics. 21 (2020). https://doi.org/10.1186/s12864-019-6413-7.

  26. S. Demir, S. Key, M. Baygin, T. Tuncer, S. Dogan, S. Brahim Belhaouari, A. Kursad Poyraz, M. Gurger, Automated knee ligament injuries classification method based on exemplar pyramid local binary pattern feature extraction and hybrid iterative feature selection, Biomed. Signal Process. Control. 71 (2022) 103191. https://doi.org/10.1016/j.bspc.2021.103191.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Baygin.

Ethics declarations

Ethical Approval

The document of ethics is attached for the data collected.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Key, S., Baygin, M., Demir, S. et al. Meniscal Tear and ACL Injury Detection Model Based on AlexNet and Iterative ReliefF. J Digit Imaging 35, 200–212 (2022). https://doi.org/10.1007/s10278-022-00581-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-022-00581-3

Keywords

Navigation