Skip to main content
Log in

Parallel Architecture of Fully Convolved Neural Network for Retinal Vessel Segmentation

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Retinal blood vessel extraction is considered to be the indispensable action for the diagnostic purpose of many retinal diseases. In this work, a parallel fully convolved neural network–based architecture is proposed for the retinal blood vessel segmentation. Also, the network performance improvement is studied by applying different levels of preprocessed images. The proposed method is experimented on DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (STructured Analysis of the Retina) which are the widely accepted public database for this research area. The proposed work attains high accuracy, sensitivity, and specificity of about 96.37%, 86.53%, and 98.18% respectively. Data independence is also proved by testing abnormal STARE images with DRIVE trained model. The proposed architecture shows better result in the vessel extraction irrespective of vessel thickness. The obtained results show that the proposed work outperforms most of the existing segmentation methodologies, and it can be implemented as the real time application tool since the entire work is carried out on CPU. The proposed work is executed with low-cost computation; at the same time, it takes less than 2 s per image for vessel extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lupas¸cu CA, Tegolo D, Trucco E: FABC: retinal vessel segmentation using AdaBoost. IEEE Trans Inf Technol Biomed 14(5):1267–1274, 2010

    Article  Google Scholar 

  2. Dizdaroglu B, Cansizoglu E a, Kalpathy-Cramer J, keck K, Chiang MF, Erdogmus D: Structure based level set method for automatic retinal vasculature segmentation. EURASIP J Image Video Process 1(39):1–26, 2014

    Google Scholar 

  3. Barkhoda W, Akhlaqian F, Amiri MD, Nouroozzadeh MS: Retina identification based on the pattern of blood vessels using fuzzy logic. EURASIP J Adv Signal Process 1(113):1–8, 2011

    Google Scholar 

  4. Zhao J, Yang J, Ai D, HongSong Y, Jiang YH, Luosh Z, Wang Y: Automatic retinal vessel segmentation using multi-scale superpixel chain tracking. Digital Signal Process 81:26–41, 2018

    Article  Google Scholar 

  5. Marin D, Aquino A, Arias MEG, Bravo JM: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146–158, 2011

    Article  PubMed  Google Scholar 

  6. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548, 2012

    Article  PubMed  Google Scholar 

  7. Firpi HA, Goodman E: Swarmed feature selection. In: Proceedings of the 33rd applied imagery pattern recognition workshop. Washington: IEEE Computer Society, 2004, pp. 112–118

    Google Scholar 

  8. Yang XS: Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In: Mira J, Álvarez JR Eds. Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg

  9. Hossam EE, Zawbaabc A bou M, Hassanien E: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381, 2016

    Article  Google Scholar 

  10. Yu-Peng C, Ying L, Gang W, Yue-Feng Z, Qian X, Jia-Hao F, Xue-Ting C: A novel bacterial foraging optimization algorithm for feature selection. Expert Syst Appl 83:1–17, 2017

    Article  Google Scholar 

  11. Sathananthavathi V, Indumathi G: BAT algorithm inspired retinal blood vessel segmentation. IET Image Process 12(11):2075–2083, 2018

    Article  Google Scholar 

  12. Fu H, Xu Y, Lin S, Kee Wong DW, Liu J: DeepVessel: Retinal Vessel Segmentation via Deep Learning and Conditional Random Field. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W Eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol 9901. Springer, Cham, 2016

  13. Maninis KK, Pont-Tuset J, Arbeláez P, Van Gool L: Deep Retinal Image Understanding. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W Eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol9901. Springer, Cham, 2016

  14. Oliveira A, Pereira S, Silva CA: Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl 112(229):242, 2018

    Google Scholar 

  15. Jiang Z, Zhang H, Wang Y, Ko S-B: Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput Med Imaging Graph 68:1–15, 2018

    Article  PubMed  Google Scholar 

  16. Guo Y, Budak U, Vespa LJ, Khorasani E, Şengur A: A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy. Measurement 125:586–591, 2018

    Article  Google Scholar 

  17. Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B: Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23:501–509, 2004

    Article  PubMed  Google Scholar 

  18. Niemeijer M, Staal JJ, van Ginneken B, Loog M, Abramoff MD: Comparative study of retinal vessel segmentation methods on a new publicly available database. SPIE Med Imag 5370:648–656, 2004

    Google Scholar 

  19. Hoover A, Kouznetsova V, Goldbaum M: Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210, 2000

    Article  CAS  PubMed  Google Scholar 

  20. Hoover A, Goldbaum M: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22(8):951–958, 2003

    Article  PubMed  Google Scholar 

  21. Badrinarayanan V, Kendall A, Cipolla R: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495, 2017

    Article  PubMed  Google Scholar 

  22. Matusugu M, Mori K, Mitari Y, Kaneda Y: Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw 16(5):555–559, 2003

    Article  Google Scholar 

  23. Ioffe S, Szegedy C: Batch normalization: accelerating deep network training by reducing internal covariate shift, 2015, arXiv:1807.01702.

  24. Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst 1:1097–1105, 2012

    Google Scholar 

  25. Bishop CM: Pattern recognition and machine learning. New York: Springer, 2006

    Google Scholar 

  26. Liskowski P, Krawiec K: Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380, 2016

    Article  PubMed  Google Scholar 

  27. Zuiderveld K: Contrast limited adaptive histogram equalization. Graphic gems IV. San Diego: Academic Press Professional, 1994, pp. 474–485

    Google Scholar 

  28. Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ: Retinal vessel segmentation using the 2-D gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222, 2006

    Article  PubMed  Google Scholar 

  29. Fraz MM, Remagnino P, Hoppe A: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548, 2012

    Article  PubMed  Google Scholar 

  30. Cheng E, Du L, Wu Y et al.: Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features. Mach Vis Appl 25(7):1779–1792, 2014

    Article  Google Scholar 

  31. Aslani S, Sarnel H: A new supervised retinal vessel segmentation method based on robust hybrid features. Biomed Signal Proc Control 30:1–12, 2016

    Article  Google Scholar 

  32. Shahid M, Taj IA: Robust retinal vessel segmentation using vessel's location map and Frangi enhancement filter. IET Image Process 12(4):494–501, 2018

    Article  Google Scholar 

  33. Soomro TA, Khan TM, Khan MAU et al.: Impact of ICA-based image enhancement technique on retinal blood vessels segmentation. IET Image Process 6:3524–3353, 2018

    Google Scholar 

  34. Biswal B, Pooja T, Bala Subrahmanyam N: Robust retinal blood vessel segmentation using line detectors with multiple masks. IET Image Process 12(3):389–399, 2018

    Article  Google Scholar 

  35. Wang X, Jiang X, Ren J: Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recogn 88:331–341, 2019

    Article  Google Scholar 

  36. Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118, 2016

    Article  PubMed  Google Scholar 

  37. Liskowski P, Krawiec K: Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380, 2016

    Article  PubMed  Google Scholar 

  38. Oliveira A, Pereira S, Silva CA: Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl 112:229–242, 2018

    Article  Google Scholar 

  39. Jiang Z, Zhang H, Wang Y, Ko SB: Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput Med Imaging Graph 68:1–15, 2018

    Article  PubMed  Google Scholar 

  40. Yan Z, Yang X, Cheng K-T: Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng 65(9):1912–1923, 2018

    Article  PubMed  Google Scholar 

  41. Hu K, Zhang Z, Niu X, Zhang Y, Cao C, Xiao F, Gao X: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing. 309:179–191, 2018

    Article  Google Scholar 

  42. Azzopardi G, Strisciuglio N, Vento M, Petkov N: Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57, 2015

    Article  PubMed  Google Scholar 

  43. Nguyen UT, Bhuiyan A, Park LA, Ramamohanarao K: An effective retinal blood vessel segmentation method using multi scale line detection. Pattern Recogn 46(3):703–715, 2013

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the Principal and Management of Mepco Schlenk Engineering College, Sivakasi, for their encouragement and support for this research work. We also acknowledge the anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathananthavathi .V.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

.V, S., .G, I. & .A, S.R. Parallel Architecture of Fully Convolved Neural Network for Retinal Vessel Segmentation. J Digit Imaging 33, 168–180 (2020). https://doi.org/10.1007/s10278-019-00250-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-019-00250-y

Keywords

Navigation