Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A: Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68 (6): 394–424, 2018
Article
Google Scholar
Bulas D, Shah N: International pediatric radiology education: who should be trained, and how? Pediatr Radiol 44 (6): 639–641, 2014. https://doi.org/10.1007/s00247-014-2910-7
PubMed
Article
Google Scholar
Chen Z, Strange H, Oliver A, Denton ERE, Boggis C, Zwiggelaar R: Topological modeling and classification of mammographic microcalcification clusters. IEEE Trans Biomed Eng 62 (4): 1203–1214, 2015. https://doi.org/10.1109/TBME.2014.2385102
PubMed
Article
Google Scholar
Cheng H, Cai X, Chen X, Hu L, Lou X: Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recogn 36 (12): 2967–2991, 2003. https://doi.org/10.1016/S0031-3203(03)00192-4
Article
Google Scholar
Ciecholewski M: Microcalcification segmentation from mammograms: a morphological approach. J Digit Imaging 30 (2): 172–184, 2017
PubMed
Article
Google Scholar
Cox RF, Hernandez-Santana A, Ramdass S, McMahon G, Harmey JH, Morgan MP: Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation. Br J Cancer 106 (3): 525–537, 2012
CAS
PubMed
PubMed Central
Article
Google Scholar
Cristianini N, Shawe-Taylor J: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods Cambridge: Cambridge University Press, 2000
Book
Google Scholar
Dalal N, Triggs B: Histograms of oriented gradients for human detection.. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol 1. IEEE, 2005, pp 886–893
Dengler J, Behrens S, Desaga J: Segmentation of microcalcifications in mammograms. IEEE Trans Med Imaging 12 (4): 634–642, 1993. https://doi.org/10.1109/42.251111
CAS
PubMed
Article
Google Scholar
Ding C, Peng H: Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3 (02): 185–205, 2005
CAS
PubMed
Article
Google Scholar
El-Naqa I, Yang Y, Wernick MN, Galatsanos NP, Nishikawa RM: A support vector machine approach for detection of microcalcifications. IEEE Trans Med Imaging 21 (12): 1552–1563, 2002
PubMed
Article
Google Scholar
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136 (5): E359–E386, 2015. https://doi.org/10.1002/ijc.29210
CAS
Article
PubMed
Google Scholar
Gonzalez RC, Woods RE: Digital Image Processing, 2nd edition. Upper Saddle River: Prentice-Hall, 2002
Google Scholar
Guan PP, Yan H: A hierarchical multilevel thresholding method for edge information extraction using fuzzy entropy. Int J Mach Learn Cybern 3 (4): 297–305, 2012
Article
Google Scholar
Guo Y, Dong M, Yang Z, Gao X, Wang K, Luo C, Ma Y, Zhang J: A new method of detecting micro-calcification clusters in mammograms using contourlet transform and non-linking simplified pcnn. Comput Methods Programs Biomed 130: 31–45, 2016
PubMed
Article
Google Scholar
Gurcan M, Yardimci Y, Cetin A, Ansari R: Detection of microcalcifications in mammograms using higher order statistics. IEEE Signal Process Lett 4 (8): 213–216, 1997. https://doi.org/10.1109/97.611278
Article
Google Scholar
Haralick RM, Shanmugam K, Dinstein I: Textural features for image classification. IEEE Trans Syst Man Cybern 3 (6): 610–622, 1973
Article
Google Scholar
Kaiser JF: On a simple algorithm to calculate the energy of a signal.. In: International Conference on Acoustics, Speech, and Signal Processing, ICASSP-90. IEEE, 1990, pp 381–384
Kallergi M, Carney GM, Gaviria J: Evaluating the performance of detection algorithms in digital mammography. Med Phys 26 (2): 267–275, 1999. http://scitation.aip.org/content/aapm/journal/medphys/26/2/10.1118/1.598514
CAS
PubMed
Article
Google Scholar
Karale VA, Mukhopadhyay S, Singh T, Khandelwal N, Sadhu A: Automated detection of microcalcification clusters in mammograms.. In: SPIE Medical Imaging, vol 10134, 2017, pp 101342r–101342r. International society for optics and photonics. https://doi.org/10.1117/12.2254330
Kim JK, Park HW: Statistical textural features for detection of microcalcifications in digitized mammograms. IEEE Trans Med Imaging 18 (3): 231–238, 1999. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=764896
CAS
PubMed
Article
Google Scholar
Linguraru MG, Marias K, English R, Brady M: A biologically inspired algorithm for microcalcification cluster detection. Med Image Anal 10 (6): 850–862, 2006. http://www.sciencedirect.com/science/article/pii/S1361841506000624
PubMed
Article
Google Scholar
Liu X, Mei M, Liu J, Hu W: Microcalcification detection in full-field digital mammograms with pfcm clustering and weighted svm-based method. EURASIP Journal on Advances in Signal Processing 2015 (1): 1, 2015
Article
Google Scholar
Mordang JJ, Janssen T, Bria A, Kooi T, Gubern-Mérida A, Karssemeijer N: Automatic microcalcification detection in multi-vendor mammography using convolutional neural networks.. In: International Workshop on Digital Mammography. Springer, 2016, pp 35–42
Mukhopadhyay S, Ray G: A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans Biomed Eng 45 (2): 180–187, 1998
CAS
PubMed
Article
Google Scholar
Nakayama R, Uchiyama Y, Yamamoto K, Watanabe R, Namba K: Computer-aided diagnosis scheme using a filter bank for detection of microcalcification clusters in mammograms. IEEE Trans Biomed Eng 53 (2): 273–283, 2006
PubMed
Article
Google Scholar
Nam SH, Choi JY: A method of image enhancement and fractal dimension for detection of microcalcifications in mammogram.. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol 2. IEEE, 1998, pp 1009–1012. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=745620
Oliver A, Torrent A, Lladó X, Tortajada M, Tortajada L, Sentís M, Freixenet J, Zwiggelaar R: Automatic microcalcification and cluster detection for digital and digitised mammograms. Knowl-Based Syst 28: 68–75, 2012 . http://www.sciencedirect.com/science/article/pii/S0950705111002577
Article
Google Scholar
Papadopoulos A, Fotiadis DI, Costaridou L: Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques. Comput Biol Med 38 (10): 1045–1055, 2008. http://www.sciencedirect.com/science/article/pii/S0010482508001042
CAS
PubMed
Article
Google Scholar
Peng R, Chen H, Varshney PK: Noise-enhanced detection of micro-calcifications in digital mammograms. IEEE J Sel Top Sign Proces 3 (1): 62–73, 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4786547
Article
Google Scholar
Rampun A, Wang H, Scotney B, Morrow P, Zwiggelaar R: Classification of mammographic microcalcification clusters with machine learning confidence levels.. In: 14Th International Workshop on Breast Imaging (IWBI 2018), vol 10718, 2018, p 107181b. International society for optics and photonics
Rangayyan RM, Ayres FJ, Desautels JEL: A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. J Franklin Inst 344: 312–348, 2007
Article
Google Scholar
Rose C, Turi D, Williams A, Wolstencroft K, Taylor C: Web services for the DDSM and digital mammography research.. In: Proceedings of the 8th International Conference on Digital Mammography, IWDM’06. Springer, Berlin, 2006, pp 376–383, https://doi.org/10.1007/11783237_51
Seth S, Mukhopadhyay S: Multi-level thresholding-based breast segmentation in mammograms.. In: International Conference on Communication, Computers and Devices, Kharagpur, India, 2010
Shen L, Rangayyan RM, Desautels JL: Shape analysis of mammographic calcifications.. In: Fifth Annual IEEE Symposium on Computer-Based Medical Systems. IEEE, 1992, pp 123–128
Shin S, Lee S, Yun ID: Classification based micro-calcification detection using discriminative restricted Boltzmann machine in digitized mammograms.. In: SPIE Medical Imaging, 2014, pp 90351l–90351l. International society for optics and photonics
Soltanian-Zadeh H, Rafiee-Rad F, Pourabdollah-Nejad DS: Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms. Pattern Recogn 37 (10): 1973–1986, 2004. http://www.sciencedirect.com/science/article/pii/S0031320304001323
Article
Google Scholar
Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM, Moore JH: A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genetic Epidemiology: the Official Publication of the International Genetic Epidemiology Society 31 (4): 306–315, 2007
Article
Google Scholar
Wei L, Yang Y, Nishikawa RM, Vernick MN, Edwards A: Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Trans Med Imaging 24 (10): 1278–1285, 2005
PubMed
Article
Google Scholar
Wilkinson L, Thomas V, Sharma N: Microcalcification on mammography: approaches to interpretation and biopsy. Br J Radiol 90 (1069): 20160594, 2016
PubMed
PubMed Central
Article
Google Scholar
Woods KS, Solka JL, Priebe CE, Doss CC, Bowyer KW, Clarke LP Comparative evaluation of pattern recognition techniques for detection of microcalcifications. Int J Pattern Recognit Artif Intell 841–852, 1993. https://doi.org/10.1117/12.148696
Yu S, Brown S, Xue Y, Guan L: Enhancement and identification of microcalcifications in mammogram images using wavelets.. In: IEEE International Conference on Systems, Man, and Cybernetics, vol 2, 1996, pp 1166–1171, https://doi.org/10.1109/ICSMC.1996.571251
Yu S, Guan L: A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films. IEEE Trans Med Imaging 19 (2): 115–126, 2000
CAS
PubMed
Article
Google Scholar
Zhang X, Homma N, Goto S, Kawasumi Y, Ishibashi T, Abe M, Sugita N, Yoshizawa M A hybrid image filtering method for computer-aided detection of microcalcification clusters in mammograms. Journal of Medical Engineering 2013, 2013. http://www.hindawi.com/journals/jme/2013/615254/abs/