Advertisement

Comprehensive Review of 3D Segmentation Software Tools for MRI Usable for Pelvic Surgery Planning

  • Alessio VirzìEmail author
  • Cécile Olivia Muller
  • Jean-Baptiste Marret
  • Eva Mille
  • Laureline Berteloot
  • David Grévent
  • Nathalie Boddaert
  • Pietro Gori
  • Sabine Sarnacki
  • Isabelle Bloch
Article
  • 85 Downloads

Abstract

Patient-specific 3D modeling is the first step towards image-guided surgery, the actual revolution in surgical care. Pediatric and adolescent patients with rare tumors and malformations should highly benefit from these latest technological innovations, allowing personalized tailored surgery. This study focused on the pelvic region, located at the crossroads of the urinary, digestive, and genital channels with important vascular and nervous structures. The aim of this study was to evaluate the performances of different software tools to obtain patient-specific 3D models, through segmentation of magnetic resonance images (MRI), the reference for pediatric pelvis examination. Twelve software tools freely available on the Internet and two commercial software tools were evaluated using T2-w MRI and diffusion-weighted MRI images. The software tools were rated according to eight criteria, evaluated by three different users: automatization degree, segmentation time, usability, 3D visualization, presence of image registration tools, tractography tools, supported OS, and potential extension (i.e., plugins). A ranking of software tools for 3D modeling of MRI medical images, according to the set of predefined criteria, was given. This ranking allowed us to elaborate guidelines for the choice of software tools for pelvic surgical planning in pediatric patients. The best-ranked software tools were Myrian Studio, ITK-SNAP, and 3D Slicer, the latter being especially appropriate if nerve fibers should be included in the 3D patient model. To conclude, this study proposed a comprehensive review of software tools for 3D modeling of the pelvis according to a set of eight criteria and delivered specific conclusions for pediatric and adolescent patients that can be directly applied to clinical practice.

Keywords

3D modeling MRI Segmentation software Pelvic surgery 

Notes

Compliance with Ethical Standards

All patients or patient’s parents gave their informed consent according to ethical board committee requirements (N°IMIS2015-04).

References

  1. 1.
    Lo Presti G, Carbone M, Ciriaci D, Aramini D, Ferrari M, Ferrari V: Assessment of DICOM viewers capable of loading patient-specific 3D models obtained by different segmentation platforms in the operating room. J Digit Imaging 28(5):518–527, 2015CrossRefPubMedGoogle Scholar
  2. 2.
    Ferrari V, Carbone M, Cappelli C, Boni L, Melfi F, Ferrari M, Mosca F, Pietrabissa A: Value of multidetector computed tomography image segmentation for preoperative planning in general surgery. Surg Endosc 26(3):616–626, 2012CrossRefPubMedGoogle Scholar
  3. 3.
    Azagury DE, Dua MM, Barrese JC, Henderson JM, Buchs NC, Ris F, Cloyd JM, Martinie JB, Razzaque S, Nicolau S, Soler L, Marescaux J, Visser BC: Image-guided surgery. Curr Probl Surg 52(12):476–520, 2015CrossRefPubMedGoogle Scholar
  4. 4.
    Haak D, Page C-E, Deserno TM: A survey of DICOM viewer software to integrate clinical research and medical imaging. J Digit Imaging 29(2):206–215, 2016CrossRefPubMedGoogle Scholar
  5. 5.
    Valeri G, Mazza FA, Maggi S, Aramini D, La Riccia L, Mazzoni G, Giovagnoni A: Open source software in a practical approach for post processing of radiologic images. Radiol Med 120(3):309–323, 2015CrossRefPubMedGoogle Scholar
  6. 6.
    Liao W, Deserno TM, Spitzer K: Evaluation of free non-diagnostic DICOM software tools. Proc SPIE 6919:691903, 2008CrossRefGoogle Scholar
  7. 7.
    Dice LR: Measures of the amount of ecologic association between species. Ecology 26(3):297–302, 1945CrossRefGoogle Scholar
  8. 8.
    Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG: Diffusion tensor MR imaging and fiber tractography: Theoretic underpinnings. Am J Neuroradiol 29(4):632–641, 2008CrossRefPubMedGoogle Scholar
  9. 9.
    Virzì A, Marret J-B, Muller CO, Berteloot L, Boddaert N, Sarnacki S, Bloch I (2017) A new method based on template registration and deformable models for pelvic bones semi-automatic segmentation in pediatric MRI. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 323–326. IEEEGoogle Scholar
  10. 10.
    Barfield W: Fundamentals of wearable computers and augmented reality. CRC Press, 2015Google Scholar
  11. 11.
    Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor H-U, Giesel FL: 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341, Jul 2010CrossRefPubMedGoogle Scholar
  12. 12.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M et al.: 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341, 2012CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rivière D, Geffroy D, Denghien I, Souedet N, Cointepas Y: Anatomist: A python framework for interactive 3D visualization of neuroimaging data. In: Python in neuroscience workshop, 2011Google Scholar
  14. 14.
    Geffroy D, Rivière D, Denghien I, Souedet N, Laguitton S, Cointepas Y: Brainvisa: A complete software platform for neuroimaging. In: Python in neuroscience workshop. Paris: Euroscipy, 2011Google Scholar
  15. 15.
    Fischl B: FreeSurfer. NeuroImage 62(2):774–781, 2012 20 Years of fMRICrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM: FSL. NeuroImage 62(2):782–790, 2012 20 Years of fMRICrossRefPubMedGoogle Scholar
  17. 17.
    Schneider CA, Rasband WS, Eliceiri KW: NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675, 2012CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage 31(3):1116–1128, 2006CrossRefPubMedGoogle Scholar
  19. 19.
    Toussaint N, Souplet J-C, Fillard P et al.: MedINRIA: Medical image navigation and research tool by INRIA. In: MICCAI, volume 7, page 280, 2007Google Scholar
  20. 20.
    McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL: Medical image processing, analysis and visualization in clinical research. In: 14th IEEE Symposium on Computer-Based Medical Systems (CBMS), 2001, pp. 381–386Google Scholar
  21. 21.
    Rosset A, Spadola L, Ratib O: OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17(3):205{216, 2004CrossRefPubMedCentralGoogle Scholar
  22. 22.
    CIBC: Seg3D: Volumetric image segmentation and visualization. Scientific Computing and Imaging Institute (SCI), 2016, Downloaded from: http://www.seg3d.org

Copyright information

© Society for Imaging Informatics in Medicine 2019

Authors and Affiliations

  • Alessio Virzì
    • 1
    • 2
    Email author
  • Cécile Olivia Muller
    • 2
    • 3
  • Jean-Baptiste Marret
    • 2
    • 3
  • Eva Mille
    • 2
    • 3
  • Laureline Berteloot
    • 2
    • 4
  • David Grévent
    • 2
    • 4
  • Nathalie Boddaert
    • 2
    • 4
  • Pietro Gori
    • 1
  • Sabine Sarnacki
    • 2
    • 3
  • Isabelle Bloch
    • 1
    • 2
  1. 1.LTCI, Télécom ParisInstitut Polytechnique de ParisParisFrance
  2. 2.IMAG2 LaboratoryImagine InstituteParisFrance
  3. 3.Department of Pediatric SurgeryParis Descartes University, Hôpital Necker Enfants-Malades, Assistance Publique - Hôpitaux de ParisParisFrance
  4. 4.Department of Pediatric RadiologyParis Descartes University, Hôpital Necker Enfants-Malades, Assistance Publique - Hôpitaux de ParisParisFrance

Personalised recommendations