Yu Q, Yang Y, Liu F, Song Y-Z, Xiang T, Hospedales TM: Sketch-A-Net: a deep neural network that beats humans. Int J Comput Vis. 122(3):411–425, 2017. https://doi.org/10.1007/s11263-016-0932-3
Article
Google Scholar
Dodge S, Karam L. A Study and Comparison of Human and Deep Learning Recognition Performance Under Visual Distortions. arXiv:170502498 [cs]. May 2017. http://arxiv.org/abs/1705.02498
Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, eds. Advances in Neural Information Processing Systems 25. 2012:1097–1105. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 316(22):2402–2410, 2016. https://doi.org/10.1001/jama.2016.17216
Article
PubMed
Google Scholar
Ting DSW, Cheung CY-L, Lim G et al.: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 318(22):2211–2223, 2017. https://doi.org/10.1001/jama.2017.18152
Article
PubMed
PubMed Central
Google Scholar
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S: Dermatologist-level classification of skin cancer with deep neural networks. Nature. 542(7639):115–118, 2017. https://doi.org/10.1038/nature21056
Article
CAS
PubMed
Google Scholar
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak JAWM, and the CAMELYON16 Consortium, Hermsen M, Manson QF, Balkenhol M, Geessink O, Stathonikos N, van Dijk MCRF, Bult P, Beca F, Beck AH, Wang D, Khosla A, Gargeya R, Irshad H, Zhong A, Dou Q, Li Q, Chen H, Lin HJ, Heng PA, Haß C, Bruni E, Wong Q, Halici U, Öner MÜ, Cetin-Atalay R, Berseth M, Khvatkov V, Vylegzhanin A, Kraus O, Shaban M, Rajpoot N, Awan R, Sirinukunwattana K, Qaiser T, Tsang YW, Tellez D, Annuscheit J, Hufnagl P, Valkonen M, Kartasalo K, Latonen L, Ruusuvuori P, Liimatainen K, Albarqouni S, Mungal B, George A, Demirci S, Navab N, Watanabe S, Seno S, Takenaka Y, Matsuda H, Ahmady Phoulady H, Kovalev V, Kalinovsky A, Liauchuk V, Bueno G, Fernandez-Carrobles MM, Serrano I, Deniz O, Racoceanu D, Venâncio R: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 318(22):2199–2210, 2017. https://doi.org/10.1001/jama.2017.14585
Article
PubMed
PubMed Central
Google Scholar
Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S: Fully automated deep learning system for bone age assessment. J Digit Imaging. 30(4):427–441, 2017. https://doi.org/10.1007/s10278-017-9955-8
Article
PubMed
PubMed Central
Google Scholar
Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP: Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 287(1):313–322, 2017. https://doi.org/10.1148/radiol.2017170236
Article
PubMed
Google Scholar
Halabi SS, Prevedello LM, Kalpathy-Cramer J, Mamonov AB, Bilbily A, Cicero M, Pan I, Pereira LA, Sousa RT, Abdala N, Kitamura FC, Thodberg HH, Chen L, Shih G, Andriole K, Kohli MD, Erickson BJ, Flanders AE: The RSNA pediatric bone age machine learning challenge. Radiology.:180736, 2018. https://doi.org/10.1148/radiol.2018180736
Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P: Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 392(10162):2388–2396, 2018. https://doi.org/10.1016/S0140-6736(18)31645-3
Article
PubMed
Google Scholar
Ribli D, Horváth A, Unger Z, Pollner P, Csabai I: Detecting and classifying lesions in mammograms with Deep Learning. Sci Rep. 8:4165, 2018. https://doi.org/10.1038/s41598-018-22437-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol. 52(7):434–440, 2017. https://doi.org/10.1097/RLI.0000000000000358
Article
PubMed
Google Scholar
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI: A survey on deep learning in medical image analysis. Medical Image Analysis. 42:60–88, 2017. https://doi.org/10.1016/j.media.2017.07.005
Article
PubMed
Google Scholar
Lakhani P, Sundaram B: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 284(2):574–582, 2017. https://doi.org/10.1148/radiol.2017162326
Article
PubMed
Google Scholar
Lakhani P: Deep convolutional neural networks for endotracheal tube position and X-ray image classification: challenges and opportunities. J Digit Imaging. 30(4):460–468, 2017. https://doi.org/10.1007/s10278-017-9980-7
Article
PubMed
PubMed Central
Google Scholar
Cicero M, Bilbily A, Colak E, Dowdell T, Gray B, Perampaladas K, Barfett J: Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol. 52(5):281–287, 2017. https://doi.org/10.1097/RLI.0000000000000341
Article
PubMed
Google Scholar
Putha P, Tadepalli M, Reddy B, et al. Can Artificial Intelligence Reliably Report Chest X-Rays?: Radiologist Validation of an Algorithm trained on 1.2 Million X-Rays. arXiv:180707455 [cs]. July 2018. http://arxiv.org/abs/1807.07455
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:3462–3471. https://doi.org/10.1109/CVPR.2017.369
Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz CP, Patel BN, Yeom KW, Shpanskaya K, Blankenberg FG, Seekins J, Amrhein TJ, Mong DA, Halabi SS, Zucker EJ, Ng AY, Lungren MP: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLOS Medicine. 15(11):e1002686, 2018. https://doi.org/10.1371/journal.pmed.1002686
Article
PubMed
PubMed Central
Google Scholar
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv:180104381 [cs]. 2018. http://arxiv.org/abs/1801.04381
Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLoS Med. 15(11):e1002683, 2018. https://doi.org/10.1371/journal.pmed.1002683
Article
PubMed
PubMed Central
Google Scholar
Swenson DW, Baird GL, Portelli DC, Mainiero MB, Movson JS: Pilot study of a new comprehensive radiology report categorization (RADCAT) system in the emergency department. Emerg Radiol. 25(2):139–145, 2018. https://doi.org/10.1007/s10140-017-1565-8
Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks. arXiv:160806993 [cs]. 2016. http://arxiv.org/abs/1608.06993
Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge. arXiv:14090575 [cs]. 2014. http://arxiv.org/abs/1409.0575
Paszke A, Gross S, Chintala S, et al. Automatic differentiation in PyTorch. 2017. https://openreview.net/forum?id=BJJsrmfCZ.
Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv:14126980 [cs]. 2014. http://arxiv.org/abs/1412.6980
Efron B, Tibshirani R: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist Sci. 1(1):54–75, 1986. https://doi.org/10.1214/ss/1177013815
Article
Google Scholar
Rajpurkar P, Irvin J, Zhu K, et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv:171105225 [cs, stat]. 2017. http://arxiv.org/abs/1711.05225
Raoof S, Feigin D, Sung A, Raoof S, Irugulpati L, Rosenow EC: Interpretation of plain chest roentgenogram. Chest. 141(2):545–558, 2012. https://doi.org/10.1378/chest.10-1302
Article
PubMed
Google Scholar