Skip to main content

Clinical Applications of a CT Window Blending Algorithm: RADIO (Relative Attenuation-Dependent Image Overlay)

Abstract

A methodology is described using Adobe Photoshop and Adobe Extendscript to process DICOM images with a Relative Attenuation-Dependent Image Overlay (RADIO) algorithm to visualize the full dynamic range of CT in one view, without requiring a change in window and level settings. The potential clinical uses for such an algorithm are described in a pictorial overview, including applications in emergency radiology, oncologic imaging, and nuclear medicine and molecular imaging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Kimpe T, Tuytschaever T: Increasing the number of gray shades in medical display systems—How much is enough? J Digit Imaging 20(4):422–432. 1052-3,2007

    Article  PubMed  Google Scholar 

  2. Gomori, J. M., and Steiner, I.: Non-linear CT windows. Computerized Radiology. 11(1), 21–27,1987

    CAS  Article  PubMed  Google Scholar 

  3. Lehr, J. L., and Capek, P.: Histogram equalization of CT images. Radiology. 154(1), 163–9,1985

    CAS  Article  PubMed  Google Scholar 

  4. Pizer, S. M., Zimmerman, J. B., and Staab, E. V.: Adaptive grey level assignment in CT scan display. Journal of Computer Assisted Tomography. 8(2), 300–5,1984

    CAS  PubMed  Google Scholar 

  5. Fayad, L. M., Jin, Y., Laine, A. F., Berkmen, Y. M., Pearson, G. D., and Freedman, B.: Technical Developments Chest CT Window Settings with Multiscale Adaptive Histogram Equalization : Pilot Study. Radiology. 845–852,2002

  6. Whitworth S, Folio L, Nguyen B.: Universal trauma CT window for rapid preliminary interpretation. Presented at the annual meeting of the American Society of Emergency Radiology 2009, referenced in: Emerg Radiol 16:502–503,2009

  7. Peterson, P.G., Pak, S. K., Nguyen, B., Jacobs, G., Folio, L.: Extreme compression for extreme conditions: Pilot study to identify optimal compression of CT images using MPEG-4 video compression. Journal of Digital Imaging. 25(6), 764–770,2012

    Article  PubMed  PubMed Central  Google Scholar 

  8. Caruso, R. D., and Postel, G. C.: Image editing with Adobe Photoshop 6.0 Radiographics. 22(4), 993–1002,2000

    Article  Google Scholar 

  9. Caruso, R. D., and Postel, G. C.: Image annotation with adobe photoshop. Journal of Digital Imaging. 15(4), 197–202,2002

    Article  PubMed  PubMed Central  Google Scholar 

  10. Corl, F. M., Garland, M. R., Lawler, L. P., and Fishman, E. K.: A Five-Step Approach to Digital Image Manipulation for the Radiologist. Radiographics. 22(4), 981–992,2002

    Article  PubMed  Google Scholar 

  11. Park, J. S., Chung, M. S., Hwang, S. B., Lee, Y. S., and Har, D. H.: Technical report on semiautomatic segmentation using the Adobe Photoshop. Journal of Digital Imaging. 18(4), 333–343,2005

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jacobs, A.: High Dynamic Range Imaging and its Application in Building Research. Advances in Building Energy Research. 1(1), 177–202,2007

    Article  Google Scholar 

  13. Martínez, M. A., Valero, E. M., and Hernández-Andrés, J.: Adaptive exposure estimation for high dynamic range imaging applied to natural scenes and daylight skies. Applied Optics. 54(4), B241,2015

    Article  PubMed  Google Scholar 

  14. Singh AK, Ditkofsky NG, York JD, Abujudeh HH, Avery LA, Brunner JF, et al.: Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing. RadioGraphics. 36:295–307,2016

    Article  PubMed  Google Scholar 

  15. Folio L.: Combat Radiology, Diagnostic Imaging of Blast and Ballistic Injuries. Springer. 35–36,2010

  16. Harris KM, Adams H, Lloyd DC, Harvey DJ.: The effect on apparent size of simulated pulmonary nodules of using three standard CT window settings. Clinical Radiology 47(4):241–4,1993

    CAS  Article  PubMed  Google Scholar 

  17. Maguire, W. M., Herman, P. G., Khan, A., Smith, R. H., Noma, S., Eacobacci, T. M., Carlin, M.: Comparison of fixed and adjustable window width and level settings in the CT evaluation of diffuse lung disease. Journal of Computer Assisted Tomography. 17(6), 847–52,1993

    CAS  Article  PubMed  Google Scholar 

  18. Larobina M, Murino L.: Medical image file formats. J. Digit. Imaging. 27:200–6,2014

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob C. Mandell.

Ethics declarations

Disclosure

Les R. Folio is an associate investigator in a research agreement with Carestream Health (Rochester, NY).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mandell, J.C., Khurana, B., Folio, L.R. et al. Clinical Applications of a CT Window Blending Algorithm: RADIO (Relative Attenuation-Dependent Image Overlay). J Digit Imaging 30, 358–368 (2017). https://doi.org/10.1007/s10278-017-9941-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-017-9941-1

Keywords

  • CT window settings
  • Grayscale visualization
  • Contrast sensitivity
  • CT dynamic range