Transforming Dermatologic Imaging for the Digital Era: Metadata and Standards


Imaging is increasingly being used in dermatology for documentation, diagnosis, and management of cutaneous disease. The lack of standards for dermatologic imaging is an impediment to clinical uptake. Standardization can occur in image acquisition, terminology, interoperability, and metadata. This paper presents the International Skin Imaging Collaboration position on standardization of metadata for dermatologic imaging. Metadata is essential to ensure that dermatologic images are properly managed and interpreted. There are two standards-based approaches to recording and storing metadata in dermatologic imaging. The first uses standard consumer image file formats, and the second is the file format and metadata model developed for the Digital Imaging and Communication in Medicine (DICOM) standard. DICOM would appear to provide an advantage over using consumer image file formats for metadata as it includes all the patient, study, and technical metadata necessary to use images clinically. Whereas, consumer image file formats only include technical metadata and need to be used in conjunction with another actor—for example, an electronic medical record—to supply the patient and study metadata. The use of DICOM may have some ancillary benefits in dermatologic imaging including leveraging DICOM network and workflow services, interoperability of images and metadata, leveraging existing enterprise imaging infrastructure, greater patient safety, and better compliance to legislative requirements for image retention.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Hibler BP, Qi QC, Rossi AM: Current state of imaging in dermatology. Semin Cutan Med Surg. 35:2–8, 2016

    Article  PubMed  Google Scholar 

  2. 2.

    Alawi SA, Kuck M, Wahrlich C et al.: Optical coherence tomography for presurgical margin assessment of non-melanoma skin cancer - a practical approach. Exp Dermatol. 22:547–551, 2013

    Article  PubMed  Google Scholar 

  3. 3.

    Chen CS, Elias M, Busam K, Rajadhyaksha M, Marghoob AA: Multimodal in vivo optical imaging, including confocal microscopy, facilitates presurgical margin mapping for clinically complex lentigo maligna melanoma. Br J Dermatol. 153:1031–1036, 2005

    Article  PubMed  Google Scholar 

  4. 4.

    Tromme I, Devleesschauwer B, Beutels P et al.: Selective Use of Sequential Digital Dermoscopy Imaging Allows a Cost Reduction in the Melanoma Detection Process: A Belgian Study of Patients with a Single or a Small Number of Atypical Nevi. Plos One. 9, 2014

  5. 5.

    Bashshur RL, Shannon GW, Tejasvi T, Kvedar JC, Gates M: The Empirical Foundations of Teledermatology: A Review of the Research Evidence. Telemed J E Health. 21:953–979, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542: 115−+.

  7. 7.

    Marghoob AA, International Skin Imaging Collaboration Melanoma Project Working G: Standards in Dermatologic Imaging. Jama Dermatol 151:819–821, 2015

    Article  PubMed  Google Scholar 

  8. 8.

    Finnane A, Curiel-Lewandrowski C, Wimberley G et al.: Proposed Technical Guidelines for the Acquisition of Clinical Images of Skin-Related Conditions. Jama Dermatol. 153:453–457, 2017

    Article  PubMed  Google Scholar 

  9. 9.

    Katragadda C, Finnane A, Soyer HP et al.: Technique Standards for Skin Lesion Imaging A Delphi Consensus Statement. Jama Dermatol. 153:207–213, 2017

    Article  Google Scholar 

  10. 10.

    International Society for Digital Imaging of the Skin ISIC Project 2017 Available at: (Accessed: December 2017)

  11. 11.

    Gibaud B: The quest for standards in medical imaging. Eur J Radiol. 78:190–198, 2011

    Article  PubMed  Google Scholar 

  12. 12.

    Baca M and Getty Research Institute. Introduction to metadata. Third edition. ed. Los Angeles: Getty Research Institute, 2016, p.pages cm.

  13. 13.

    McKoy K, Antoniotti NM, Armstrong A et al.: Practice Guidelines for Teledermatology. Telemed J E Health. 22:981–990, 2016

    Article  PubMed  Google Scholar 

  14. 14.

    Aldus Corporation TIFF Revision 6.0 1992 Available at: (Accessed: December 2017)

  15. 15.

    JPEG Standard for digital compression and encoding of continuous-tone still images. Part 1 - Requirements and implementation guidelines. International Standards Organisation/International Electrotechincal Commission, 1994.

  16. 16.

    Camera and Imaging Products Association Exchangeable Image File Format for Digital Still Cameras - CIPA DC-008, JEITA CP-3451C Translation 2016 Available at: (Accessed: December 2017)

  17. 17.

    Clunie DA, Dennison DK, Cram D, Persons KR, Bronkalla MD, Primo HR: Technical Challenges of Enterprise Imaging: HIMSS-SIIM Collaborative White Paper. J Digit Imaging. 29:583–614, 2016

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bidgood, Jr WD, Horii SC: Modular extension of the ACR-NEMA DICOM standard to support new diagnostic imaging modalities and services. J Digit Imaging. 9:67–77, 1996

    Article  PubMed  Google Scholar 

  19. 19.

    Quigley EA, Tokay BA, Jewell ST, Marchetti MA, Halpern AC: Technology and Technique Standards for Camera-Acquired Digital Dermatologic Images A Systematic Review. Jama Dermatol. 151:883–890, 2015

    Article  PubMed  Google Scholar 

  20. 20.

    Malvehy J, Puig S, Argenziano G, Marghoob AA, Soyer HP: International Dermoscopy Society Board m. Dermoscopy report: proposal for standardization. Results of a consensus meeting of the International Dermoscopy Society. J Am Acad Dermatol. 57:84–95, 2007

    Article  PubMed  Google Scholar 

  21. 21.

    Towbin AJ, Roth CJ, Bronkalla M, Cram D: Workflow Challenges of Enterprise Imaging: HIMSS-SIIM Collaborative White Paper. J Digit Imaging. 29:574–582, 2016

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Krupinski E, Burdick A, Pak H et al.: American Telemedicine Association’s Practice Guidelines for Teledermatology. Telemed J E Health. 14:289–302, 2008

    Article  PubMed  Google Scholar 

  23. 23.

    DICOM Standards Committee DICOM PS3.18. Web Services 2017 Available at: (Accessed: December 2017)

  24. 24.

    Integrating the Healthcare Enterprise Web-based Image Capture 2017 Available at: (Accessed: December 2018)

  25. 25.

    Caffery L: An Analysis of DICOM and Its Use for Image Management and Communication in Store-and-Forward Telehealth. In: Raad H Ed.. Telemedicine. Hauppauge, NY: Nova Science Publishers, Inc., 2015, pp. 33–534

    Google Scholar 

  26. 26.

    Pandit RR, Boland MV: Impact of Digital Imaging and Communications in Medicine Workflow on the Integration of Patient Demographics and Ophthalmic Test Data. Ophthalmology. 122:227–232, 2015

    Article  PubMed  Google Scholar 

  27. 27.

    Cram D, Roth CJ, Towbin AJ: Orders- Versus Encounters-Based Image Capture: Implications Pre- and Post-Procedure Workflow, Technical and Build Capabilities, Resulting, Analytics and Revenue Capture: HIMSS-SIIM Collaborative White Paper. J Digit Imaging. 29:559–566, 2016

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. IEEE Std 610. 1991: 1–217.

  29. 29.

    Ferrara G, Argenyi Z, Argenziano G et al.: The Influence of Clinical Information in the Histopathologic Diagnosis of Melanocytic Skin Neoplasms. Plos One. 4, 2009

  30. 30.

    Roth CJ, Lannum LM, Persons KRA: Foundation for Enterprise Imaging: HIMSS-SIIM Collaborative White Paper. Journal of Digital Imaging. 29:530–538, 2016

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Scheinfeld N: Photographic images, digital imaging, dermatology, and the law. Arch Dermatol. 140:473–476, 2004

    Article  PubMed  Google Scholar 

  32. 32.

    Karthiyayini M, Thavavel V and Selvam NS. Cloud based Vendor Neutral Archive: Reduces Imaging Rates and Enhances Patient Care. Icaccs 2015 Proceedings of the 2nd International Conference on Advanced Computing & Communication Systems. 2015.

  33. 33.

    Langer SG, Persons K, Erickson BJ, Blezek D: Towards a more cloud-friendly medical imaging applications architecture: a modest proposal. J Digit Imaging. 26:58–64, 2013

    Article  PubMed  Google Scholar 

  34. 34.

    Siegel EL, Channin DS: Integrating the Healthcare Enterprise: A Primer. Radiographics. 21:1339–1341, 2001

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Integrating the Healthcare Enterprise Invoke Image Display Rev. 1.3 - Trial Implementation 2016 Available at: (Accessed: December 2017)

  36. 36.

    Wang KC, Filice RW, Philbin JF, Siegel EL, Nagy PG: Five Levels of PACS Modularity: Integrating 3D and Other Advanced Visualization Tools. Journal of Digital Imaging. 24:1096–1102, 2011

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Integrating the Healthcare Enterprise IHE IT Infrastructure (ITI) Technical Framework Volume 1 (ITI TF-1) Integration Profiles 2017 Available at: (Accessed: December 2017)

  38. 38.

    Seifert P. Intergrating the Healthcare Enterprise Cross-Enterprise Document Sharing for Imaging (XDS-I.b) 2011 Available at: (Accessed: September 2017)

  39. 39.

    Caffery L. Teledermatology PACS. In: Soyer HP BM, Smith AC, Wurm EMT, (ed.). Telemedicine in dermatology. Heidelberg: Springer, 2012, p. 133–42.

  40. 40.

    van Ooijen PMA, Aryanto KY, Broekema A, Horii S: DICOM data migration for PACS transition: procedure and pitfalls. Int J Comput Ass Rad. 10:1055–1064, 2015

    Google Scholar 

  41. 41.

    Behlen FM, Sayre RE, Weldy JB, Michael JS: “Permanent” records: Experience with data migration in radiology information system and picture archiving and communication system replacement. Journal of Digital Imaging. 13:171–174, 2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    DICOM Standards Committee DICOM PS3.15 Security and Sytem Managment Profiles. Annex E- Attribute Confidentiality Profiles 2017 Available at: (Accessed: December 2017)

  43. 43.

    Freymann JB, Kirby JS, Perry JH, Clunie DA, Jaffe CC: Image Data Sharing for Biomedical Research-Meeting HIPAA Requirements for De-identification. Journal of Digital Imaging. 25:14–24, 2012

    Article  PubMed  Google Scholar 

  44. 44.

    Clunie DA, Gebow D: Block selective redaction for minimizing loss during de-identification of burned in text in irreversibly compressed JPEG medical images. J Med Imaging. 2, 2015

  45. 45.

    National Electrical Manufacturers Association CP-1674 - Add Dermatology Anatomic Site Context Group and NYU Numbering System Coding Scheme 2016 Available at: (Accessed: December 2017)

  46. 46.

    Cram D, Stratton R, Clark S: Review of Dicompass DICOM Camera App for Android. Journal of Digital Imaging. 29:3–6, 2016

    Article  PubMed  Google Scholar 

  47. 47.

    DICOM Standards Committee, Working Group 26, Pathology Supplement 145: Whole Slide Microscopic Image IOD and SOP Classes 2010 Available at: (Accessed: December 2017)

  48. 48.

    Badano A, Revie C, Casertano A et al.: Consistency and Standardization of Color in Medical Imaging: a Consensus Report. Journal of Digital Imaging. 28:41–52, 2015

    Article  PubMed  Google Scholar 

  49. 49.

    National Electrical Manufacturers Association Procedures for the DICOM standards committe 2015 Available at: (Accessed: December 2017)

  50. 50.

    Madden BC. A propsal for Working Group 19 - Dermatologic Standards 2009 Available at: (Accessed: September 2017)

  51. 51.

    Boland MV, Schuman JS, Mattox CG, Soc AG: American Glaucoma Society Position Statement: Electronic Data Standards for Clinical Practice. J Glaucoma. 22:174–175, 2013

    Article  PubMed  Google Scholar 

  52. 52.

    Argenziano G, Soyer HP: Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma. Lancet Oncol. 2:443–449, 2001

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    National Electrical Manufacturers Association CP-1736 - Add Visible Light Photography Attributes corresponding to EXIF 2.31 2017 Available at: (Accessed: December 2017)

Download references


The authors acknowledge the contribution of the International Skin Imaging Collaboration: Melanoma Project working group members. We acknowledge David Clunie as co-first author of this manuscript.


Liam Caffery receives funding under a collaborative research agreement between Memorial Sloan Kettering Cancer Center and The University of Queensland. Liam Caffery and H. Peter Soyer are supported in part by the Centre of Research Excellence in Telehealth funded by Australia’s National Health and Medical Research Council (NHMRC APP1061183). Allan Halpern is supported in part by the National Institutes of Health/National Cancer Institute Cancer Center Support Grant P30 CA008748.

Author information



Corresponding author

Correspondence to Liam J. Caffery.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caffery, L.J., Clunie, D., Curiel-Lewandrowski, C. et al. Transforming Dermatologic Imaging for the Digital Era: Metadata and Standards. J Digit Imaging 31, 568–577 (2018).

Download citation


  • Dermatology
  • Metadata
  • Standards
  • Enterprise imaging