Skip to main content

Advertisement

Log in

A Novel Method for Correcting Non-uniform/Poor Illumination of Color Fundus Photographs

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Retinal fundus images are often corrupted by non-uniform and/or poor illumination that occur due to overall imperfections in the image acquisition process. This unwanted variation in brightness limits the pathological information that can be gained from the image. Studies have shown that poor illumination can impede human grading in about 10~15% of retinal images. For automated grading, the effect can be even higher. In this perspective, we propose a novel method for illumination correction in the context of retinal imaging. The method splits the color image into luminosity and chroma (i.e., color) components and performs illumination correction in the luminosity channel based on a novel background estimation technique. Extensive subjective and objective experiments were conducted on publicly available DIARETDB1 and EyePACS images to justify the performance of the proposed method. The subjective experiment has confirmed that the proposed method does not create false color/artifacts and at the same time performs better than the traditional method in 84 out of 89 cases. The objective experiment shows an accuracy improvement of 4% in automated disease grading when illumination correction is performed by the proposed method than the traditional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jager RD, Mieler WF, Miller JW: Age-related macular degeneration. N Engl J Med 358(24):2606–2617, 2008

    Article  PubMed  CAS  Google Scholar 

  2. Cheung N, Mitchell P, Wong TY: Diabetic retinopathy. Lancet 376(9735):124–136, 2010 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20580421

    Article  PubMed  Google Scholar 

  3. Panwar N, Huang P, Lee J, Keane PA, Chuan TS, Richhariya A, Teoh S, Lim TH, Agrawal R: Fundus photography in the 21st century—a review of recent technological advances and their implications for worldwide healthcare. Telemed e-Health 22(3):198–208, 2016

    Article  Google Scholar 

  4. Cunha-Vaz J, Rui B, Torcato S, et al: Computer-aided detection of diabetic retinopathy progression. Digital Teleretinal Screening, Berlin Heidelberg: Springer 59–66, 2012

  5. Kubecka L, Jan J, Kolar R: Retrospective illumination correction of retinal images. J Biomed Imaging 2010:11, 2010

    Google Scholar 

  6. Likar B, Maintz JA, Viergever MA, Pernus F: Retrospective shading correction based on entropy minimization. J Microsc 197(3):285–295, 2000

    Article  PubMed  CAS  Google Scholar 

  7. Leahy C, O’Brien A, Dainty C: Illumination correction of retinal images using Laplace interpolation. Appl Opt 51(35):8383–8389, 2012

    Article  PubMed  Google Scholar 

  8. Youssif AAA, Ghalwash AZ, Ghoneim AS: A comparative evaluation of preprocessing methods for automatic detection of retinal anatomy. Proceedings of the Fifth International Conference on Informatics and Systems (INFOS 07) 2430, 2007

  9. Varnousfaderani ES, Yousefi S, Belghith A, Goldbaum MH: Luminosity and contrast normalization in color retinal images based on standard reference image. SPIE Medical Imaging, International Society for Optics and Photonics: 97843N–97843N, 2016

  10. Foracchia M, Grisan E, Ruggeri A: Luminosity and contrast normalization in retinal images. Med Image Anal 9(3):179–190, 2005

    Article  PubMed  Google Scholar 

  11. Kumari K, Mittal D: Automated drusen detection technique for age-related macular degeneration. J Biomed Eng Med Imaging 2(1):18, 2015

    Google Scholar 

  12. Xiao D, Vignarajan J, Lock J, Frost S, Tay-Kearney M, Kanagasingam Y: Retinal image registration and comparison for clinical decision support. Australas Med J 5(9):507, 2012

    Article  PubMed  PubMed Central  Google Scholar 

  13. Akram MU, Tariq A, Anjum MA, Javed MY: Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy. Appl Opt 51(20):4858–4866, 2012

    Article  PubMed  CAS  Google Scholar 

  14. Kande GB, Savithri TS, Subbaiah PV: Automatic detection of microaneurysms and hemorrhages in digital fundus images. J Digit Imaging 23(4):430–437, 2010

    Article  PubMed  Google Scholar 

  15. Grisan E, Giani A, Ceseracciu E, Ruggeri A: Model-based illumination correction in retinal images. 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro: 984–987, 2006

  16. Kolar R, Odstrcilik J, Jan J, Harabis V: Illumination correction and contrast equalization in colour fundus images. 19th European Signal Processing Conference: 298–302, 2011

  17. Gonzalez RC, Woods RE: Digital image processing. USA: Pearson Prentice Hall, 2008

    Google Scholar 

  18. Russ JC: The image processing handbook, 2nd edition. Boca Raton: IEEE press, 1995

    Google Scholar 

  19. Guillemaud R: Uniformity correction with homomorphic filtering on region of interest. Int Conf Image Process 2:872–875, 1998

    Google Scholar 

  20. Skifstad K, Jain R: Illumination independent change detection for real world image sequences. Comput Vis Graph Image Process 46(3):387–399, 1989

    Article  Google Scholar 

  21. Pham DL, Prince JL: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18(9):737–752, 1999

    Article  PubMed  CAS  Google Scholar 

  22. Vlachos MD, Dermatas ES: Non-uniform illumination correction in infrared images based on a modified fuzzy c-means algorithm. J Biomed Graph Comput 3(1):6, 2012

    Google Scholar 

  23. Finlayson G, Hordley S: Improving gamut mapping color constancy. IEEE Trans Image Process 9(10):1774–1783, 2000

    Article  PubMed  CAS  Google Scholar 

  24. Jobson DJ, Rahman Z, Woodell GA: Properties and performance of a center/surround retinex. IEEE Trans Image Process 6(3):451–462, 1997

    Article  PubMed  CAS  Google Scholar 

  25. Li B, Wang S, Geng Y: Image enhancement based on Retinex and lightness decomposition. 18th IEEE International Conference on Image Processing (ICIP), 3417–3420, 2011

  26. Niemann H, Chrastek R, Lausen B, Kubecka L, Jan J, Mardin CY, Michelson G: Towards automated diagnostic evaluation of retina images. Pattern Recognit Image Anal 16(4):671–676, 2006

    Article  Google Scholar 

  27. Narasimha-Iyer H, Can A, Roysam B, Stewart V, Tanenbaum HL, Majerovics A, Singh H: Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy. IEEE Trans Biomed Eng 53(6):1084–1098, 2006

    Article  PubMed  Google Scholar 

  28. Zheng Y, Vanderbeek B, Xiao R, Daniel E, Stambolian D, Maguire M, O'Brien J, Gee J: Retrospective illumination correction of retinal fundus images from gradient distribution sparsity. 9th IEEE International Symposium on Biomedical Imaging (ISBI): 972–975, 2012

  29. Fairchild MD. Color appearance models, Second Edition, John Wiley & Sons, 2005.

  30. Smith AR: Colour gamut transform pairs. ACM Siggraph. Comput Graph 12(3):12–19, 1978

    Article  CAS  Google Scholar 

  31. Cantrell K et al.: Use of the hue parameter of the hue, saturation, value colour space as a quantitative analytical parameter for bitonal optical sensors. Anal Chem 82(2):531–542, 2009

    Article  CAS  Google Scholar 

  32. John CR: The image processing handbook, Fifth edition. Boca Raton: CRC Press, 2006

    Google Scholar 

  33. Viola P, Jones M: Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001) 1: I-I, 2001

  34. Saha S, Démoulin V: ALOHA: an efficient binary descriptor based on Haar features. IEEE International Conference on Image Processing (ICIP): 2345–2348, 2012

  35. Saha SK, Fernando B, Xiao D, Tay-Kearney ML, Kanagasingam Y: Deep learning for automatic detection and classification of microaneurysms, hard and soft exudates, and hemorrhages for diabetic retinopathy diagnosis. Investig Ophthalmol Vis Sci 57(12):5962–5962, 2016

    Google Scholar 

  36. Zhu X, Rangayyan RM: Detection of the optic disc in images of the retina using the Hough transform. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2008): 3546–3549, 2008

  37. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 521(7553):436–444, 2015

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajib Kumar Saha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S.K., Xiao, D. & Kanagasingam, Y. A Novel Method for Correcting Non-uniform/Poor Illumination of Color Fundus Photographs. J Digit Imaging 31, 553–561 (2018). https://doi.org/10.1007/s10278-017-0040-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-017-0040-0

Keywords

Navigation