Skip to main content

Advertisement

Log in

Application of Improved Homogeneity Similarity-Based Denoising in Optical Coherence Tomography Retinal Images

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Image denoising is a fundamental preprocessing step of image processing in many applications developed for optical coherence tomography (OCT) retinal imaging—a high-resolution modality for evaluating disease in the eye. To make a homogeneity similarity-based image denoising method more suitable for OCT image removal, we improve it by considering the noise and retinal characteristics of OCT images in two respects: (1) median filtering preprocessing is used to make the noise distribution of OCT images more suitable for patch-based methods; (2) a rectangle neighborhood and region restriction are adopted to accommodate the horizontal stretching of retinal structures when observed in OCT images. As a performance measurement of the proposed technique, we tested the method on real and synthetic noisy retinal OCT images and compared the results with other well-known spatial denoising methods, including bilateral filtering, five partial differential equation (PDE)-based methods, and three patch-based methods. Our results indicate that our proposed method seems suitable for retinal OCT imaging denoising, and that, in general, patch-based methods can achieve better visual denoising results than point-based methods in this type of imaging, because the image patch can better represent the structured information in the images than a single pixel. However, the time complexity of the patch-based methods is substantially higher than that of the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huang D, Swanson EA, Lin CP, Schumann JS, Stinson WG, Chang M, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG: Optical coherence tomography. Science 254:1178–1181, 1991

    Article  CAS  PubMed  Google Scholar 

  2. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI: Intracoronary optical coherence tomography: a comprehensive review. J Am Coll Cardiol Intv 2(11):1035–1046, 2009

    Article  Google Scholar 

  3. Schmitt JM, Xiang SH, Yung KM: Speckle in optical coherence tomography. J Biomed Opt 4:95–105, 1999

    Article  CAS  PubMed  Google Scholar 

  4. Rogowska J, Brezinski ME: Evalutation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging. IEEE Trans Med Imaging 19:1261–1266, 2000

    Article  CAS  PubMed  Google Scholar 

  5. Gargesha M, Jenkins MW, Rollins AM, Wilson DL: Denoising and 4D visualization of OCT images. Opt Express 16:12313–12333, 2008

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kobayashi M, Hanafusa H, Takada K, Noda J: Polarization-independent interferometric optical-time-domain reflectometer. J Lightwave Technol 9:623–628, 1991

    Article  Google Scholar 

  7. Iftimia N, Bouma BE, Tearney GJ: Speckle reduction in optical coherence tomography by path length encoded angular compounding. J Biomed Opt 8:260–263, 2003

    Article  CAS  PubMed  Google Scholar 

  8. Hughes M, Spring M, Podoleanu A: Speckle noise reduction in optical coherence tomography of paint layers. Appl Opt 49:99–107, 2010

    Article  CAS  PubMed  Google Scholar 

  9. Pircher M, Gtzinger E, Leitgeb R, Fercher AF, Hitzenberger CK: Speckle reduction in optical coherence tomography by frequency compounding. J Biomed Opt 8:565–569, 2003

    Article  PubMed  Google Scholar 

  10. Bernstein R: Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images. IEEE Trans Circ Syst 34:1275–1291, 1987

    Article  Google Scholar 

  11. Rogowska J, Brezinski ME: Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images. Phys Med Biol 47:641–655, 2002

    Article  PubMed  Google Scholar 

  12. Marks DL, Ralston TS, Boppart SA: Speckle reduction by I-divergence regularization in optical coherence tomography. J Opt Soc Am A 22:2366–2371, 2005

    Article  Google Scholar 

  13. Wong A, Mishra A, Bizheva K, Clausi DA: General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt Express 18:8338–8352, 2010

    Article  CAS  PubMed  Google Scholar 

  14. Chen Q, Sun QS, Xia DS: Homogeneity similarity based image denoising. Pattern Recogn 43:4089–4100, 2010

    Article  Google Scholar 

  15. Bashkansky M, Reintjes J: Statistics and reduction of speckle in optical coherence tomography. Opt Lett 25:545–547, 2000

    Article  CAS  PubMed  Google Scholar 

  16. Salinas HM, Fernandez DC: Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography. IEEE Trans Med Imaging 26:761–771, 2007

    Article  PubMed  Google Scholar 

  17. Perona P, Malik J: Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal 12:629–639, 1990

    Article  Google Scholar 

  18. Gilboa G, Sochen N, Zeevi YY: Image enhancement and denoising by complex diffusion processes. IEEE Trans Pattern Anal Mach Intell 26:1020–1036, 2004

    Article  PubMed  Google Scholar 

  19. Fang L, Li S, Nie Q, Izatt JA, Toth CA, Farsiu S: Sparsity based denoising of spectral domain optical coherence tomography images. Biomed Opt Express 3:927–942, 2012

    Article  PubMed Central  PubMed  Google Scholar 

  20. Tomasi C, Manduchi R: Bilateral filtering for gray and color images. Sixth International Conference on Computer Vision (ICCV), Bombay, India, 1998, pp 839–846

  21. Chen Q, Montesinos P, Sun QS, Heng PA, Xia DS: Adaptive total variation denoising based on difference curvature. Image Vis Comput 28:298–306, 2010

    Article  Google Scholar 

  22. Chen Q, Montesinos P, Sun QS, Xia DS: Ramp preserving Perona-Malik model. Signal Process 90:1963–1975, 2010

    Article  Google Scholar 

  23. Rudin LI, Osher S, Fatemi E: Nonlinear total variation based noise removal algorithms. Physica D 60:259–268, 1992

    Article  Google Scholar 

  24. Buades A, Coll B, Morel JM: A non-local algorithm for image denoising. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, California, 2005, pp 60–65

  25. Dabov K, Foi A, Katkovnik V, Egiazarian K: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16:2080–2095, 2007

    Article  PubMed  Google Scholar 

  26. Huang Y, Gangaputra S, Lee KE, Narkar AR, Klein R, Klein BEK, Meuer SM, Danis RP: Signal quality assessment of retinal optical coherence tomography images. Investig Ophthalmol Vis Sci 53:2133–41, 2012

    Article  Google Scholar 

  27. He L, Greenshields IR: A non-local maximum likelihood estimation method for Rician noise reduction in MR images. IEEE Trans Med Imaging 28:165–172, 2009

    Article  PubMed  Google Scholar 

  28. Moreno-Montanes J, Olmo N, Alvarez A, Garcia N, Zarranz-Ventura J: Cirrus high-definition optical coherence tomography compared with stratus optical coherence tomography in glaucoma diagnosis. Investig Ophthalmol Vis Sci 51:335–343, 2010

    Article  Google Scholar 

  29. Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express 18:19413–19428, 2010

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rubin DL, de Sisternes L, Kutzscher L, Chen Q, Leng T, Zheng LL: Improving drusen visualization in projection images in optical coherence tomography. Ophthalmology 120:644–644e2, 2013

    Article  PubMed Central  PubMed  Google Scholar 

  31. Chen Q, Leng T, Zheng LL, Kutzscher L, Ma J, de Sisternes L, Rubin DL: Automated drusen segmentation and quantification in SD-OCT images. Med Image Anal 17:1058–1072, 2013

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kierman DF, Mieler WF, Hariprasad SM: Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol 498:18–31, 2010

    Article  Google Scholar 

  33. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP, Simoncelli EP: Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612, 2004

    Article  PubMed  Google Scholar 

  34. Cincotti G, Loi G, Pappalardo M: Frequency decomposition and compounding of ultrasound medical images with wavelet packets. IEEE Trans Med Imaging 20:764–771, 2001

    Article  CAS  PubMed  Google Scholar 

  35. Bao P, Zhang L: Noise reduction for magnetic resonance images via adaptive multiscale products thresholding. IEEE Trans Med Imaging 22:1089–1099, 2003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Fundamental Research Funds for the Central Universities, grant no. 30920140111004, the Qing Lan Project, and the Bio-X Interdisciplinary Initiatives Program of Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Chen or Daniel L. Rubin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., de Sisternes, L., Leng, T. et al. Application of Improved Homogeneity Similarity-Based Denoising in Optical Coherence Tomography Retinal Images. J Digit Imaging 28, 346–361 (2015). https://doi.org/10.1007/s10278-014-9742-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-014-9742-8

Keywords

Navigation