Skip to main content
Log in

Cardiac MRI Segmentation Using Mutual Context Information from Left and Right Ventricle

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

In this paper, we propose a graphcut method to segment the cardiac right ventricle (RV) and left ventricle (LV) by using context information from each other. Contextual information is very helpful in medical image segmentation because the relative arrangement of different organs is the same. In addition to the conventional log-likelihood penalty, we also include a “context penalty” that captures the geometric relationship between the RV and LV. Contextual information for the RV is obtained by learning its geometrical relationship with respect to the LV. Similarly, RV provides geometrical context information for LV segmentation. The smoothness cost is formulated as a function of the learned context which helps in accurate labeling of pixels. Experimental results on real patient datasets from the STACOM database show the efficacy of our method in accurately segmenting the LV and RV. We also conduct experiments on simulated datasets to investigate our method’s robustness to noise and inaccurate segmentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allender S: European Cardiovascular Disease Statistics. European Heart Network. 2008

  2. A.F. Frangi, W.J. Niessen, and M.A. Viergever, “Three dimensional modeling for functional analysis of cardiac images: a review,” IEEE Trans Med. Imag, vol. 20, no. 1, pp. 2–25, 2001

    Article  CAS  Google Scholar 

  3. C. Petitjean and J-N. Dacher, “A review of segmentation methods in short axis cardiac mr images,” Med. Imag. Anal., vol. 15, no. 2, pp. 169–184, 2011

  4. S. Shors, C. Fung, C. Francois, P. Finn, and D. Fieno, “Accurate quantification of right ventricular mass at MR imaging by using cine true fast imaging with steady state precession: study in dogs.,” Radiology, vol. 230, no. 2, pp. 383–388, 2004

    Article  PubMed  Google Scholar 

  5. Jolly MP: Automatic recovery of the left ventricle blood pool in cardiac cine MR images. In: MICCAI, 2008, pp 110–118

  6. N. Paragios, “A variational approach for the segmentation of the left ventricle in cardiac image analysis,” Intl. J. Comp. Vis., vol. 50, no. 3, pp. 345–362, 2002

    Article  Google Scholar 

  7. M. Lynch, O. Ghita, and P. Whelan, “Left ventricle myocardium segmentation using a coupled level set with a-priori knowledge,” Comput. Med. Imag. Graph., vol. 30, no. 4, pp. 255–262, 2006

    Article  CAS  Google Scholar 

  8. Lin X, Cowan B, and Young A: Model based graph cut method for segmentation of the left ventricle. In In Proc: EMBC, 2005, pp 3059–3062

  9. Mahapatra D and Sun Y: Orientation histograms as shape priors for left ventricle segmentation using graph cuts. In Proc: MICCAI, 2011, pp 420–427

  10. Mahapatra D: Cardiac image segmentation from cine cardiac MRI using graph cuts and shape priors. Journal of Digital Imaging. doi:10.1007/s10278-012-9548-5, 2013

  11. J. Cousty, L. Najman, M. Couprie, S. Clment-Guinaudeau, T. Goissen, and J. Garot, “Segmentation of 4-D cardiac MRI: automated method based on spatio temporal watershed cuts.,” Image and Vis. Comput., vol. 28, no. 8, pp. 1229–1243, 2010

    Article  Google Scholar 

  12. C. Cocosco, W. Niessen, T. Netsch, E-J. Vonken, G. Lund, A. Stork, and M. Viergever.,“Automatic image driven segmentation of the ventricles in cardiac cine MRI.,” J. magn. Reson. Imag., vol. 28, no. 2, pp. 366–374, 2008

  13. Mahapatra D, and Sun Y: Joint registration and segmentation of dynamic cardiac perfusion images using mrfs. In In Proc: MICCAI, 2010, pp 493–501

  14. D. Mahapatra and Y. Sun, “Integrating segmentation information for improved elastic registration of perfusion images using an mrf framework,” IEEE Trans. Imag. Proc., vol. 21, no. 1, pp. 170–183, 2012

    Article  Google Scholar 

  15. Mahapatra D: Joint segmentation and groupwise registration of cardiac perfusion images using temporal information. Journal of Digital Imaging

  16. D. Mahapatra: Groupwise registration of dynamic cardiac perfusion images using temporal dynamics and segmentation information", SPIE Medical Imaging 2012, SPIE Vol 8314, pp 1–7

  17. M.R. Kaus, J. von Berg, J. Weese, W. Niessen, and V. Pekar, “Automated segmentation of the left ventricle in cardiac MRI,” Med Image Anal., vol. 8, no. 3, pp. 245–254, 2004

    Article  PubMed  Google Scholar 

  18. Zhu Y, Papademetris X, Sinusas A, and Duncan J.S: Segmentation of left ventricle from 3d cardiac mr image sequence using a subject specific dynamic model. In Proc.IEEE CVPR, 2008, pp 1–8

  19. Sun W, Setin M, Chan R, Reddy V, Holmvang G, Ch V, and Willsky A: segmenting and tracking of the left ventricle by learning the dynamics in cardiac images. In Proc. IPMI, 2005, pp 553–565

  20. R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Taylor, “A minimum description length approach to statistical shape modelling,” IEEE Trans. Med. Imag., vol. 21, pp. 525–537, 2002

    Article  Google Scholar 

  21. Perperidis D, Mohiaddin R, and Rueckert D: Construction of a 4d statistical atlas of the cardiac anatomy and its use in classification. In MICCAI, 2005, pp 402–410

  22. Besbes A, Komodakis N, and Paragios N: Graph-based knowledge-driven discrete segmentation of the left ventricle. In IEEE ISBI, 2009, pp 49–52

  23. S.C. Mitchell, B.P.F. Lelieveldt, R.J. van der Geest, H.G. Bosch, J.H.C Reiver, and M. Sonka, “Multistage hybrid active appearance models: segmentation of cardiac MR and ultrasound images,” IEEE Trans Med. Imag, vol. 20, no. 5, pp. 415–423, 2001

  24. H. Zhang, A. Wahle, R. Johnson, T. Scholz, and M. Sonka, “4-D cardiac MR image analysis: left and right ventricular morphology and function.,” IEEE Trans Med. Imag, vol. 29, no. 2, pp. 350–364, 2010

    Article  Google Scholar 

  25. Zambal S, Hladuvka J, and Buhler K: Improving segmentation of the left ventricle using a two component statistical model. In MICCAI, 2006, pp 151–158

  26. Lelieveldt B, Mitchell S, Bosch J, van der Geest R, Sonka M, and Reiber J: Time continuous segmentation of cardiac image sequences using active appearance motion models. In IPMI, 2001, pp 446–452

  27. C. Pluempitiwiriyawej, J.M.F. Moura, Y.L.Wu, and C. Ho, “STACS: new active contour scheme for cardiac MR image segmentation,” IEEE Trans. Med. Imag., vol. 24, no. 5,pp. 593–603, 2005

  28. Billet F, Sermeanst M, Delingette H, and Ayache N: Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-MRI data. In Functional imaging and modeling of the heart (FMIH), 2009, pp 376–385

  29. J. Ltjnen, S. Kivist, J. Koikkalainen, D. Smutek, and K. Lauerma, “Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images,” Med Image Anal., vol. 8, no. 3, pp. 371–386, 2004

    Article  Google Scholar 

  30. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 6, no. 6, pp. 721–741, 1984

    Article  CAS  Google Scholar 

  31. Kumar S and Hebert M: Discriminative random fields: a discriminative framework for contextual interaction in classification. In Proc. ICCV, 2003, pp 1150–1157

  32. S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 24, no. 24, pp. 509–522, 2002

    Article  Google Scholar 

  33. Hoiem D, Efros AA, and Hebert M: Putting objects in perspective. In Proc. CVPR, 2006, pp 2137–2144

  34. He X, Zemel RS, and Carreira-Perpinan MA: Multiscale conditional random fields for image labeling. In Proc. CVPR, 2004, pp 695–702

  35. Murphy K, Torralba A and Freeman WT: Graphical model for recognizing scenes and objects. In Proc. NIPS

  36. Z. Tu and X. Bai, “Auto-context and its application to high-level vision tasks and 3d brain image segmentation,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 32, no. 10, pp. 1744 – 1757, 2010

    Article  Google Scholar 

  37. Li W, Liao S, Feng Q, Chen W, and Shen D: Learning image context for segmentation of prostate in ct-guided radiotherapy. In MICCAI, 2011, pp 570–578

  38. Delong A and Boykov Y: Globally optimal segmentation of multi-region objects. In ICCV, 2009, pp 285–292

  39. Ben Ayed I, Punithakumar K, Garvin G, Romano W, and Li S: Graph cuts withinvariant object-interaction priors: Application to intervertebral disc segmentation. In IPMI, 2011, pp 221–232

  40. Song Q, Chen M, Bai J, Sonka M, and Wu X: Surface-region context in optimal multi-object graph based segmentation: robust delineation of pulmonary tumors. In IPMI, 2011, pp 61–72

  41. Y. Boykov and O. Veksler, “Fast approximate energy minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, pp. 1222–1239, 2001

    Article  Google Scholar 

  42. V. Chalana and Y. Kim, “A methodology for evaluation of boundary detection algorithms on medical images,” IEEE Trans. Med. Imag., vol. 16, no. 5, pp. 642–652, 1997

    Article  CAS  Google Scholar 

  43. D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge, “Comparing images using the hausdorff distance,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15, no. 9, pp. 850–863, 1993

    Article  Google Scholar 

  44. C.G. Fonseca, M. Backhaus, D.A. Bluemke, R.D. Britten, J.D. Chung, B.R. Cowan, I.D. Dinov, J.P. Finn, P.J. Hunter, A.H. Kadish, D.C. Lee, J.A.C. Lima, P. Medrano-Gracia, K. Shivkumar, A. Suinesiaputra, W. Tao, and A.A. Young., “The cardiac atlas project an imaging database for computational modeling and statistical atlases of the heart.,” Bioinformatics, vol. 27, no. 16, pp. 2288–2295, 2011

    Article  PubMed  CAS  Google Scholar 

  45. A.H. Kadish, D. Bello, J.P. Finn, R.O. Bonow, A. Schaechter, H. Subacius, C. Albert, J.P. Daubert, C.G. Fonseca, and J.J. Goldberger., “Rationale and design for the defribrillators to reduce risk by magnetic resonance imaging evaluation (determine) trial.,” J. Cardiovascular Electrophysiology, vol. 20, no. 9, pp. 982–987, 2009

    Article  Google Scholar 

  46. A. Elen, J. Hermans, J. Ganame, D. Loeckx, J. Bogaert, F. Maes, and P. Suetens., “Automatic 3-d breath-hold related motion correction of dynamic multislice mri.,” IEEE Trans. Med. Imag., vol. 29, no. 3, pp. 868–878, 2010

    Article  Google Scholar 

  47. A.A. Young, B.R. Cowan, S.F. Thrupp, W.J. Hedley, and L.J. DellItalia., “Left ventricular mass and volume: fast calculation with guide-point modeling on mr images.,” Radiology, vol. 202, no. 2, pp. 597–602, 2000

    Google Scholar 

  48. Suinesiaputra A and et al: Left ventricular segmentation challenge from cardiac mri: a collation study. In STACOM 2011, 2011, pp 88–97

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwarikanath Mahapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahapatra, D. Cardiac MRI Segmentation Using Mutual Context Information from Left and Right Ventricle. J Digit Imaging 26, 898–908 (2013). https://doi.org/10.1007/s10278-013-9573-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-013-9573-z

Keywords

Navigation