Automatic Retrieval of Bone Fracture Knowledge Using Natural Language Processing

Abstract

Natural language processing (NLP) techniques to extract data from unstructured text into formal computer representations are valuable for creating robust, scalable methods to mine data in medical documents and radiology reports. As voice recognition (VR) becomes more prevalent in radiology practice, there is opportunity for implementing NLP in real time for decision-support applications such as context-aware information retrieval. For example, as the radiologist dictates a report, an NLP algorithm can extract concepts from the text and retrieve relevant classification or diagnosis criteria or calculate disease probability. NLP can work in parallel with VR to potentially facilitate evidence-based reporting (for example, automatically retrieving the Bosniak classification when the radiologist describes a kidney cyst). For these reasons, we developed and validated an NLP system which extracts fracture and anatomy concepts from unstructured text and retrieves relevant bone fracture knowledge. We implement our NLP in an HTML5 web application to demonstrate a proof-of-concept feedback NLP system which retrieves bone fracture knowledge in real time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Do BH, Wu A, Biswal S, Kamaya A, Rubin DL: Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file. Radiographics 30(7):2039–2048, 2010

    PubMed  Article  Google Scholar 

  2. 2.

    Lacson R, Khorasani R: Practical examples of natural language processing in radiology. J Am Coll Radiol 8(12):872–874, 2011

    PubMed  Article  Google Scholar 

  3. 3.

    Hripcsak G, Austin J, Alderson P, Friedman C: Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports. Radiology 224(1):157–163, 2002

    PubMed  Article  Google Scholar 

  4. 4.

    Sistrom CL, Dreyer KJ, Dang PA, Weilburg JB, Boland GW, Rosenthal DI, Thrall J: Recommendations for additional imaging in radiology reports: multifactorial analysis of 5.9 million examinations. Radiology 53(2):453–461, 2009

    Article  Google Scholar 

  5. 5.

    Dang PA, Kalra MK, Blake MA, Schultz TJ, Halpern EF, Dreyer KJ: Original research: extraction of recommendation features in radiology with natural language processing: exploratory study. AJR Am J Roentgenol 191(2):313–320, 2008

    PubMed  Article  Google Scholar 

  6. 6.

    Thomas BJ, Ouellette H, Halpern EF, Rosenthal DI: Automated computer-assisted categorization of radiology reports. AJR Am J Roentgenol 184(2):687–690, 2005

    PubMed  Article  Google Scholar 

  7. 7.

    Murff HJ, FitzHenry F, Matheny ME, Gentry N, Kotter KL, Crimin K, Dittus RS, Rosen AK, Elkin PL, Brown SH, Speroff T: Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 306(8):848–855, 2011

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Mehta A, Dreyer KJ, Schweitzer A, Couris J, Rosenthal D: Voice recognition—an emerging necessity within radiology: experiences of the Massachusetts General Hospital. J Digit Imaging 11(4 Suppl 2):20–23, 1998

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Quint DJ: Voice recognition: ready for prime time? J Am Coll Radiol 4(10):667–669, 2007

    PubMed  Article  Google Scholar 

  10. 10.

    Mehta A, McLoud TC: Voice recognition. J Thoracic Imaging 18:178–182, 2003

    Article  Google Scholar 

  11. 11.

    Pezzullo J, Tung GA, Rogg JM, Davis LM, Brody JM, Mayo-Smith WW: Voice recognition dictation: radiologist as transcriptionist. J Digit Imaging 21(4):384–389, 2008

    PubMed  Article  Google Scholar 

  12. 12.

    Wu AS, Do BH, Kim J, Rubin DL: Evaluation of negation and uncertainty detection and its impact on precision and recall in search. J Digit Imaging 24(2):234–242, 2011

    PubMed  Article  Google Scholar 

  13. 13.

    Clifford R. Wheeless III, MD. Wheeless’ Textbook of Orthopaedics. http://www.wheelessonline.com

  14. 14.

    Greenspan A. Orthopedic Imaging—A Practical Approach, fourth edition. Baltimore: Lippincott Williams & Wilkins, 2004.

  15. 15.

    Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG: A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inform 34(5):301–310, 2001

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Lakhani P, Kim W, Langlotz CP: Automated detection of critical results in radiology reports. J Digit Imaging 25(1):30–36, 2012

    PubMed  Article  Google Scholar 

Download references

Acknowledgment of Grants

None

Financial Disclosures or Other Assistance

None

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bao H. Do.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Do, B.H., Wu, A.S., Maley, J. et al. Automatic Retrieval of Bone Fracture Knowledge Using Natural Language Processing. J Digit Imaging 26, 709–713 (2013). https://doi.org/10.1007/s10278-012-9531-1

Download citation

Keywords

  • Natural language processing
  • Decision support
  • Information retrieval of bone fractures