A Knowledge-Based Approach for Carpal Tunnel Segmentation from Magnetic Resonance Images


Carpal tunnel syndrome (CTS) has been reported as one of the most common peripheral neuropathies. Carpal tunnel segmentation from magnetic resonance (MR) images is important for the evaluation of CTS. To date, manual segmentation, which is time-consuming and operator dependent, remains the most common approach for the analysis of the carpal tunnel structure. Therefore, we propose a new knowledge-based method for automatic segmentation of the carpal tunnel from MR images. The proposed method first requires the segmentation of the carpal tunnel from the most proximally cross-sectional image. Three anatomical features of the carpal tunnel are detected by watershed and polygonal curve fitting algorithms to automatically initialize a deformable model as close to the carpal tunnel in the given image as possible. The model subsequently deforms toward the tunnel boundary based on image intensity information, shape bending degree, and the geometry constraints of the carpal tunnel. After the deformation process, the carpal tunnel in the most proximal image is segmented and subsequently applied to a contour propagation step to extract the tunnel contours sequentially from the remaining cross-sectional images. MR volumes from 15 subjects were included in the validation experiments. Compared with the ground truth of two experts, our method showed good agreement on tunnel segmentations by an average margin of error within 1 mm and dice similarity coefficient above 0.9.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosén I: Prevalence of carpal tunnel syndrome in a general population. JAMA 282(2): 153–158, 1999

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Thoma A, Veltri K, Haines T, Duku E: A meta-analysis of randomized controlled trials comparing endoscopic and open carpal tunnel decompression. Plast Reconstr Surg 114: 1137–1146, 2004

    PubMed  Google Scholar 

  3. 3.

    Tung WL, Zhao C, Yoshii Y, Su FC, An KN, Amadio PC: Comparative study of carpal tunnel compliance in the human, dog, rabbit, and rat. J Orthop Res 28: 652–656, 2010

    PubMed  Google Scholar 

  4. 4.

    Pacek CA, Tang J, Goitz RJ, Kaufmann RA, Li ZM: Morphological analysis of the carpal tunnel. Hand 5:77–81, 2010

    PubMed  Article  Google Scholar 

  5. 5.

    Middleton WD, Kneeland JB, Kellman GM, Cates JD, Sanger JR, Jesmanowicz A, Froncisz W, Hyde JS: MR imaging of the carpal tunnel: normal anatomy and preliminary findings in the carpal tunnel syndrome. Am J Roentgenol 148: 307–316, 1987

    Article  CAS  Google Scholar 

  6. 6.

    Cudlip SA, Howe FA, Phil D, Clifton A, Schwartz MS, Bell BA: Magnetic resonance neurography studies of the median nerve before and after carpal tunnel decompression. J Neurosurg 96: 1046–1051, 2002

    PubMed  Article  Google Scholar 

  7. 7.

    Ablove RH, Peimer CA, Diao E, Oliverio R, Kuhn JP: Morphologic changes following endoscopic and two-portal subcutaneous carpal tunnel release. J Hand Surg 19A: 821–826, 1994

    Google Scholar 

  8. 8.

    Cobb TK, Bond JR, Cooney WP, Metcalf BJ: Assessment of the ratio of carpal contents to carpal tunnel volume in patients with carpal tunnel syndrome: a preliminary report. J Hand Surg 22A (4): 635–639, 1997

    Google Scholar 

  9. 9.

    Uchiyama S, Itsubo T, Yasutomi T, Nakagawa H, Kamimura M, Kato H: Quantitative MRI of the wrist and nerve conduction studies in patients with idiopathic carpal tunnel syndrome. J Neurol Neurosurg Psychiatry 76: 1103–1108, 2005

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Mogk JPM, Keir PJ: Evaluation of the carpal tunnel based on 3-D reconstruction from MRI. J Biomech 40: 2222–2229, 2007

    PubMed  Article  Google Scholar 

  11. 11.

    Mogk JPM, Keir PJ: Wrist and carpal tunnel size and shape measurements: effects of posture. Clin Biomech 23: 1112–1120, 2008

    Article  Google Scholar 

  12. 12.

    Lluch AL: Thickening of the synovium of the digital flexor tendons: cause or consequence of the carpal tunnel syndrome? J Hand Surg Br 17(2): 209–212, 1992

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Ham SJ, Kolkman WF, Heeres J, den Boer JA: Changes in the carpal tunnel due to action of the flexor tendons: visualization with magnetic resonance imaging. J Hand Surg Am 21(6): 997–1003, 1996

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Moriya T, Zhao C, Cha SS, Schmelzer JD, Low PA, An KN, Amadio PC: Tendon injury produces changes in SSCT and nerve physiology similar to carpal tunnel syndrome in an in vivo rabbit model. Hand 6(4): 399–407, 2011

    PubMed  Article  Google Scholar 

  15. 15.

    Kunze NM, Goetz JE, Thedens DR, Baer TE, Lawler EA, Brown TD: Individual flexor tendon identification within the carpal tunnel: a semi-automated analysis method for serial cross-section magnetic resonance images. Orthop Res Rev 1: 31–42, 2009

    PubMed  Google Scholar 

  16. 16.

    Xu S, Liu H, Song E: Marker-controlled watershed for lesion segmentation in mammograms. J Digit Imaging 24:754–763,2011

    Google Scholar 

  17. 17.

    Nunzio GD, Tommasi E, Agrusti A, Cataldo R, Mitri ID, Favetta M, Maglio S, Massafra A, Quarta M, Torsello M, Zecca I, Bellotti R, Tangaro S, Calvini P, Camarlinghi N, Falaschi F, Cerello P, Oliva P: Automatic lung segmentation in CT images with accurate handling of the hilar region. J Digital Imaging 24(1): 11–27, 2011

    Article  Google Scholar 

  18. 18.

    Umesh Adiga PS, Chaudhuri BB: An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images. Pattern Recognit 34: 1449–1458, 2004

    Article  Google Scholar 

  19. 19.

    Kass M, Witkin A, Terzopoulos D: Snake: active contour models. Int J Comput Vis 1(4): 321–331, 1988

    Article  Google Scholar 

  20. 20.

    Rangayyan RM, Kamenetsky I, Benediktsson H: Segmentation and analysis of the glomerular basement membrane in renal biopsy samples using active contours: a pilot Study. J Digit Imaging 23(3): 323–331, 2010

    PubMed  Article  Google Scholar 

  21. 21.

    Cootes TF, Taylor CJ, Cooper DH, Graham J: Active shape models-their training and application. Comput Vis Image Underst 61(1): 38–59, 1995

    Article  Google Scholar 

  22. 22.

    Snel JG, Venema HW, Grimbergen CA: Detection of the carpal bone contours from 3D MR images of the wrist using a planar radial scale-space snake. IEEE Trans Med Imaging 17(6): 1063–1072, 1998

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Santarelli MF, Positano V, Michelassi C, Lombardi M, Landini L: Automated cardiac MR image segmentation: theory and measurement evaluation. Med Eng Phys 25: 149–159, 2003

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Han CC, Lee CH, Peng WL: Hand radiograph image segmentation using a coarse-to-fine strategy. Pattern Recognit 40: 2994–3004, 2007

    Article  Google Scholar 

  25. 25.

    Seifert S, Wächter I, Schmelzle G, Dillmann R: A knowledge-based approach to soft tissue reconstruction of the cervical spine. IEEE Trans Med Imaging 28(4) : 494–507, 2009

    PubMed  Article  Google Scholar 

  26. 26.

    Yu J, Wang Y., Chen P: Fetal ultrasound image segmentation system and its use in fetal weight estimation. Med Bio Eng Comput 46: 1227–1237, 2008

    Article  Google Scholar 

  27. 27.

    Zhang TY, Suen CY: A fast parallel algorithm for thinning digital patterns. Communications of the ACM 27(3): 236–239, 1984

    Article  Google Scholar 

  28. 28.

    Chen HC, Sun YN, Wang YY, Lin CH, Wang CK, Jou IM: Segmentation of flexor tendons within carpal tunnel from magnetic resonance image. In: International Computer Symposium (ICS), Tainan, Taiwan, 2010, pp 932–935

  29. 29.

    Dhawan AP: Medical Image Analysis. Hoboken: Wiley-Interscience, 2003, pp 186–187

  30. 30.

    Besl PJ, McKay ND: A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2): 236–256, 1992

    Article  Google Scholar 

  31. 31.

    Lorensen WE, Cline HE: Marching cubes: A high resolution 3-D surface construction algorithm. Comput Graph (ACM SIG) 21(4): 163–169, 1987

    Article  Google Scholar 

  32. 32.

    Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ, Wells WM, Jolesz FA, Kikinis R: Statistical validation image segmentation quality based on a spatial overlap index. Acad Radiol 11: 178–189, 2004

    PubMed  Article  Google Scholar 

  33. 33.

    Chan TF, Vese LA: Active contour without edges. IEEE Trans Image Process 10 (2): 266–277, 2001

    PubMed  Article  CAS  Google Scholar 

Download references


The authors would like to express their appreciation for the grant under contract NSC 99-2627-B-006-010 from the National Science Council, Taiwan, ROC. This work also utilized the shared facilities supported by the Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan, ROC.

Author information



Corresponding author

Correspondence to Yung-Nien Sun.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, HC., Wang, YY., Lin, CH. et al. A Knowledge-Based Approach for Carpal Tunnel Segmentation from Magnetic Resonance Images. J Digit Imaging 26, 510–520 (2013). https://doi.org/10.1007/s10278-012-9530-2

Download citation


  • Carpal tunnel
  • Knowledge-based segmentation
  • MR
  • Deformable model
  • Watershed
  • Polygonal curve