Skip to main content
Log in

An Automated Blood Vessel Segmentation Algorithm Using Histogram Equalization and Automatic Threshold Selection

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

This paper focuses on the detection of retinal blood vessels which play a vital role in reducing the proliferative diabetic retinopathy and for preventing the loss of visual capability. The proposed algorithm which takes advantage of the powerful preprocessing techniques such as the contrast enhancement and thresholding offers an automated segmentation procedure for retinal blood vessels. To evaluate the performance of the new algorithm, experiments are conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm performs better than the other known algorithms in terms of accuracy. Furthermore, the proposed algorithm being simple and easy to implement, is best suited for fast processing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kanski JJ: Clinical Ophthalmology: A Systematic Approach. Butterworth-Heinemann, London, UK, 1989

    Google Scholar 

  2. Sussman EJ, Tsiaras WG, Soper KA: Diagnosis of diabetic eye disease. J Am Med Assoc 247:3231–3234, 1982

    Article  CAS  Google Scholar 

  3. Lee SJ, McCarty CA, Taylor HR, Keeffe JE: Costs of mobile screening for diabetic retinopathy: A practical framework for rural populations. Aust J Rural Health 8:186–192, 2001

    Article  Google Scholar 

  4. Taylor HR, Keeffe JE: World blindness: A 21st century perspective. Brit J Ophthalmol 85:261–266, 2001

    Article  CAS  Google Scholar 

  5. Streeter L, Cree MJ: Microaneurysm detection in colour fundus images. In: Image and Vision Computing. New Zealand, Palmerston North, New Zealand, Nov. 2003, pp. 280–284

  6. Soares JVB, Leandro JJG, Cesar Jr, RM, Jelinek HF, Cree MJ: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imag 25(9):1214–1222, 2006

    Article  Google Scholar 

  7. Hoover A, Kouznetsova V, Goldbaum M: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imag 19(3):203–210, 2000

    Article  CAS  Google Scholar 

  8. Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imag 8:263–269, 1989

    Article  CAS  Google Scholar 

  9. Tolias Y, Panas S: A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans Med Imag 17:263–273, 1998

    Article  CAS  Google Scholar 

  10. Sun Y: Automated identification of vessel contours in coronary arteriograms by an adaptive tracking algorithm. IEEE Trans Med Imag 8:78–88, 1989

    Article  CAS  Google Scholar 

  11. Tamura S, Okamoto Y, Yanashima K: Zero-crossing interval correction in tracing eye-fundus blood vessels. Pattern Recognit 21(3):227–233, 1988

    Article  Google Scholar 

  12. Tamura S, Tanaka K, Ohmori S, Okazaki K, Okada A, Hoshi M: Semiautomatic leakage analyzing system for time series fluorescein ocular fundus angiography. Pattern Recognit 16(2):149–162, 1983

    Article  Google Scholar 

  13. Jiang X, Mojon D: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131–137, 2003

    Article  Google Scholar 

  14. Thackray BD, Nelson AC: Semi-automatic segmentation of vascular network images using a rotating structuring element (ROSE) with mathematical morphology and dual feature thresholding. IEEE Trans Med Imag 12:385–392, 1993

    Article  CAS  Google Scholar 

  15. Klein AK, Lee F, Amini A: Quantitive coronary angiography with deformable spline models. IEEE Trans Med Imag 16:468–482, 1997

    Article  CAS  Google Scholar 

  16. Nekovei R, Sun Y: Back-propagation network and its configuration for blood vessel detection in angiograms. IEEE Trans Neural Networks 6:64–72, 1995

    Article  CAS  Google Scholar 

  17. Thackray BD, Nelson AC: Semi-automatic segmentation of vascular network images using a rotating structuring element (ROSE) with mathematical morphology and dual feature thresholding. IEEE Trans Med Imag 12:385–392, 1993

    Article  CAS  Google Scholar 

  18. Ritchings RT, Colchester ACF: Detection of abnormalities on carotid angiograms. Pattern Recogn Lett 4:367–374, 1986

    Article  Google Scholar 

  19. Pizer SM, Johnston RE, Ericksen JP, Yankaskas BC, Muller KE: Contrast-limited adaptive histogram equalization: Speed and effectiveness. In: Proc. of the 1st Conf. on Visualization in Biomedical Computing, 1990, pp 337–345

  20. Ridler TW, Calvard: Picture thresholding using an iterative selection method. In: Proc. IEEE Trans. On Systems, Man, Cybernetics, vol. SMC-8, 1978, pp 630–632

  21. Niemeijer M, van Ginneken B: 2002 [Online]. Available: http://www.isi.uu.nl/Reseach/Databases/DRIVE/results.php

  22. Leandro JJG, Soares JVB, Cesar RM Jr., Jelinek HF: Blood vessels segmentation in non-mydriatic images using wavelets and statistical classifiers. In: Proc. of the 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), 2003, pp 262–269

  23. Salem NM, Nandi AK: Novel and adaptive contribution of the red channel in pre-processing of colour fundus images. J Franklin Inst 344:243–256, 2007

    Article  Google Scholar 

  24. Jain AK: Fundamental of digital image processing. Prentice Hall, 1989, ISBN: 0133325764

  25. Hossain F, Alsharif MR: Image enhancement based on logarithmic transform coefficient and adaptive histogram equalization. In: Proc. of Int. Conf. on Convergence Information Technology. 2007, pp 1439–1444

  26. The MathWorks, Inc, (1994–2010). The Matlab package, [online]. Available: http://www.mathworks.com/ [2008, October 18]

  27. Papadopoulos A, Fotiadis DI, Costaridou L: Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques. J Comput Biol Med 38:1045–1055, 2008

    Article  CAS  Google Scholar 

  28. Costa LF, Cesar RM Jr: Shape analysis and classification: Theory and practice. Boca Raton: CRC Press, 2001, ISBN 0-8493-3493-4

  29. Kwan HK: Fuzzy filters for noisy image filtering. In: Proc. Int. Sym. on Circuits and Systems (ISCAS), vol. 4, 2003, pp 161–164

  30. Gonzalez RC, Woods RE: Digital Image Processing, 2nd edition. Englewood Cliffs, NJ: Prentice hall, 2002. ISBN: 0201180758

  31. Mendonca AM: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. In: Proc. IEEE Trans. on Med. Imag., vol. 25, no. 9, pp. 1200–1213, 2006

  32. Metz CE: Basic principles of ROC analysis. Semin Nucl Med 8(4):283–298, 1978

    Article  PubMed  CAS  Google Scholar 

  33. Cohen J: A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46, 1960

    Article  Google Scholar 

  34. Staal J, Abramoff MD, Niemeijer M, Viergever MA, Van Ginneken B: Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Img 23(4):501–509, 2004

    Article  Google Scholar 

  35. Niemeijer M, Staal J, Van Ginneken B, Loog M, Abramoff MD: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Fitzpatrick M, Sonka M Eds. Proc. SPIE Med. Image, vol. 5370, 2004, pp. 648–656

  36. Reza AW, Eswaran C, Hati S: Diabetic retinopathy: A quadtree based blood vessel detection algorithm using RGB components in fundus images. J Med Syst 32(2):147–155, 2008

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan D. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, M.D., Eswaran, C. & Mueen, A. An Automated Blood Vessel Segmentation Algorithm Using Histogram Equalization and Automatic Threshold Selection . J Digit Imaging 24, 564–572 (2011). https://doi.org/10.1007/s10278-010-9302-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-010-9302-9

Key Words

Navigation