Optimization of Perfusion CT Protocol for Imaging of Extracranial Head and Neck Tumors


The in vivo assessment of physiological processes associated with microcirculation in the head and neck tissue by means of perfusion computed tomography is widely used in the management of patients with head and neck tumors. However, there is no systematic consideration of the total acquisition duration and placement of the scans. A simulation study for optimizing perfusion studies of extracranial head and neck tumors, with considerations of reducing radiation dose while maintaining accuracy of the perfusion parameters, is demonstrated here. The suggested that dual-phase optimized protocols may provide reliable estimations of the permeability surface area product as well as blood flow and volume without additional radiation burden and serious patient discomfort. These optimized protocols can potentially be useful in the clinical setting of examining patients with extracranial head and neck tumors.

This is a preview of subscription content, log in to check access.

Fig 1.
Fig 2.
Fig 3.
Fig 4.
Fig 5.
Fig 6.
Fig. 7.


  1. 1.

    Lee TY: Functional CT: physiological models. Trends Biotech 20:S3–S10, 2002

    Article  Google Scholar 

  2. 2.

    Miles KA: Functional computed tomography. Eur J Radiol 38:2079–2084, 2002

    CAS  Google Scholar 

  3. 3.

    Tofts PS, Brix G, Buckley DL, et al: Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusible tracer: standardized quantities and symbols. JMRI 10:223–232, 1999

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Sobol WT, Cure JK: Can in vivo assessment of tissue hemodynamics with dynamic contrast-enhanced CT be used in the diagnosis of tumors and monitoring of cancer therapy outcomes. Radiology 232:631–632, 2004

    PubMed  Article  Google Scholar 

  5. 5.

    Roberts HC, Roberts TPL, Bollen AW, et al: Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol 8:384–391, 2001

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Lüdemann L, Grieger W, Wurm R, et al: Comparison of dynamic contrast-enhanced MRI with WHO tumor grading for gliomas. Eur Radiol 11:1231–1241, 2001

    PubMed  Article  Google Scholar 

  7. 7.

    Mayr NA, Hawighorst H, Yuh WTC, et al: MR microcirculation assessment in cervical cancer: correlations with histomorphological tumor markers and clinical outcome. JMRI 10:267–276, 1999

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Bisdas S, Baghi M, Smolarz A, et al: Quantitative measurements of perfusion and permeability of oropharyngeal and oral cavity cancer, recurrent disease, and associated lymph nodes using dynamic first pass contrast-enhanced computed tomography. Invest Radiol 42:172–179, 2007

    PubMed  Article  Google Scholar 

  9. 9.

    Rumboldt Z, Al-Okaili R, Deveikis JP: Perfusion CT for head and neck tumors: pilot study. Am J Neuroradiol 26:1178–1185, 2005

    PubMed  Google Scholar 

  10. 10.

    Gandhi D, Hoeffner EG, Carlos RC, et al: Computed tomography perfusion of squamous cell carcinoma of the upper aerodigestive tract. Initial results. J Comput Assist Tomogr 27:687–693, 2003

    PubMed  Article  Google Scholar 

  11. 11.

    Goh V, Halligan S, Hugill JA, et al: Quantitative colorectal cancer perfusion measurement using dynamic contrast-enhanced, multidetector-row computed tomography: effect of acquisition time and implications for protocols. J Comput Assist Tomogr 29:59–63, 2005

    PubMed  Article  Google Scholar 

  12. 12.

    Cenic A, Nabavi DG, Craen RA, et al: A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. Am J Neuradiol 21:462–470, 2000

    CAS  Google Scholar 

  13. 13.

    Brix G, Kiessling F, Lucht R, et al: Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429, 2004

    PubMed  Article  Google Scholar 

  14. 14.

    Cheong LHD, Lim CCT, Koh TS: Dynamic contrast-enhanced CT of intracranial meningioma: comparison of distributed and compartmental tracer kinetic models—initial results. Radiology 232:921–930, 2004

    Article  Google Scholar 

  15. 15.

    Ostergaard L, Weisskoff RM, Chesler DA, et al: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 36:715–725, 1996

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Calamante F, Cadian D, Connelly A: Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations and potential implications for clinical use. Stroke 3:1146–1151, 2002

    Article  Google Scholar 

  17. 17.

    Hirata M, Sugawara Y, Murase K, et al: Evaluation of optimal scan duration and end time in cerebral CT perfusion study. Radiat Med 23:351–363, 2005

    PubMed  Google Scholar 

  18. 18.

    Kalra MK, Small WC, Torres WE: A 45-second CT perfusion protocol for rectal cancers may not be adequate to infer vascular permeability-surface area products. Radiology 238:755–756, 2006

    PubMed  Article  Google Scholar 

  19. 19.

    Murase K, Nanjo T, Li S, et al: Effect of X-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies. Phys Med Biol 50:5019–5029, 2005

    PubMed  Article  Google Scholar 

  20. 20.

    Fukumura D, Yuan F, Monsky WL, Chen Y, Jain RK: Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 151:679–688, 1997

    PubMed  CAS  Google Scholar 

  21. 21.

    Hermans R, Meijerink M, Van den Bogaert W: Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 57:1351–1356, 2003

    PubMed  Google Scholar 

  22. 22.

    Siegel MJ, Schmidt B, Bradley D, Suess C, Hildebolt C: Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 233:515–522, 2004

    PubMed  Article  Google Scholar 

  23. 23.

    Hamberg LM, Rhea JT, Hunter GJ, et al: Multi-detector row CT: radiation dose characteristics. Radiology 226:762–772, 2003

    PubMed  Article  Google Scholar 

  24. 24.

    European Guidelines on Quality Criteria for Computed Tomography (EUR 16262 EN, May 1999). Available at: www.drs.dk/guidelines/ct/quality/index.htm. Accessed February 2008

  25. 25.

    Goh V, Halligan S, Bartram CI: Quantitative tumor perfusion assessment with multidetector CT: are measurements from two commercial software packages interchangeable. Radiology 242:777–782, 2007

    PubMed  Article  Google Scholar 

Download references


The authors acknowledge support from the Singapore Cancer Syndicate (SCS-CS-0072).

Author information



Corresponding author

Correspondence to Sotirios Bisdas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bisdas, S., Foo, C.Z., Thng, C.H. et al. Optimization of Perfusion CT Protocol for Imaging of Extracranial Head and Neck Tumors. J Digit Imaging 22, 437–448 (2009). https://doi.org/10.1007/s10278-008-9122-3

Download citation

Key words

  • Perfusion CT
  • blood flow
  • blood volume
  • permeability surface-area product
  • head and neck